Skip to main content
×
Home
    • Aa
    • Aa

Choquet–Kendall–Matheron theorems for non-Hausdorff spaces

  • JEAN GOUBAULT-LARRECQ (a1) and KLAUS KEIMEL (a2)
Abstract

We establish Choquet–Kendall–Matheron theorems on non-Hausdorff topological spaces. This typical result of random set theory is profitably recast in purely topological terms using intuitions and tools from domain theory. We obtain three variants of the theorem, each one characterising distributions, in the form of continuous valuations, over relevant powerdomains of demonic, angelic and erratic non-determinism, respectively.

Copyright
References
Hide All
Abramsky S. and Jung A. (1994) Domain theory. In: Abramsky S., Gabbay D. M. and Maibaum T. S. E. (eds.) Handbook of Logic in Computer Science 3, Oxford University Press 1168.
Alvarez-Manilla M., Edalat A. and Saheb-Djahromi N. (1997) An extension result for continuous valuations. In: Edalat A., Jung A., Keimel K. and Kwiatkowska M. (eds.) Proceedings of the 3rd Workshop on Computation and Approximation (Comprox III). Electronic Notes in Theoretical Computer Science 13.
Birkhoff G. (1940) Lattice Theory, American Mathematical Society.
Choquet G. (1953–54) Theory of capacities. Annales de l'Institut Fourier 5 131295.
Denneberg D. (1994) Non-Additive Measure and Integral, Kluwer.
Erné M. (1991) The ABC of order and topology. In: Herrlich H. and Porst H.-E. (eds.) Category Theory at Work. Research and Exposition in Mathematics 18, Heldermann Verlag 5783.
Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M. and Scott D. S. (2003) Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications 93, Cambridge University Press.
Gilboa I. and Schmeidler D. (1992) Additive representation of non-additive measures and the Choquet integral. Discussion Papers 985, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
Goubault-Larrecq J. (2007a) Continuous capacities on continuous state spaces. In: Arge L., Cachin Ch., Jurdziński T. and Tarlecki A. (eds.) Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP'07), Wrocław, Poland. Springer-Verlag Lecture Notes in Computer Science 4596 764776
Goubault-Larrecq J. (2007b) Continuous previsions. In: Duparc J. and Henzinger T. A. (eds.) Proceedings of the 16th Annual EACSL Conference on Computer Science Logic (CSL'07), Lausanne, Switzerland. Springer-Verlag Lecture Notes in Computer Science 4646 542557.
Goubault-Larrecq J. (2007) Une introduction aux capacités, aux jeux et aux prévisions, Version 6. Available at http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp_1_6.pdf.
Goubault-Larrecq J. (2010) De Groot duality and models of choice: angels, demons and nature. Mathematical Structures in Computer Science 20 (2)169237.
Groemer H. (1978) On the extension of additive functionals on classes of convex sets. Pacific Journal of Mathematics 75 397410.
Heckmann R. (1997) Abstract valuations: A novel representation of Plotkin power domain and Vietoris hyperspace. In: Proc. 13th Intl. Symp. on Mathematical Foundations of Programming Semantics (MFPS'97). Electronic Notes in Theoretical Computer Science 6.
Jones C. and Plotkin G. D. (1989) A probabilistic powerdomain of evaluations. In: Proc. 4th IEEE Symposium on Logics in Computer Science (LICS'89), IEEE Computer Society Press 186195.
Jung A. (2004) Stably compact spaces and the probabilistic powerspace construction. In: Desharnais J. and Panangaden P. (eds.) Domain-theoretic Methods in Probabilistic Processes. Electronic Lecture Notes in Computer Science 87.
Keimel K. and Lawson J. (2005) Measure extension theorems for T 0-spaces. Topology and its Applications 149 (1-3)5783.
Klain D. A. and Rota G.-C. (1997) Introduction to Geometric Probability, Lezioni Lincee, Cambridge University Press.
König H. (1997) Measure and Integration: An Advanced Course in Basic Procedures and Applications, Springer Verlag.
Matheron G. (1975) Random Sets and Integral Geometry, Wiley.
Mislove M. (1998) Topology, domain theory and theoretical computer science. Topology and Its Applications 89 359.
Mislove M. (2000) Nondeterminism and probabilistic choice: Obeying the law. In: Proc. 11th Conf. Concurrency Theory (CONCUR'00). Springer-Verlag Lecture Notes in Computer Science 1877 350364.
Molchanov I. (2005) Theory of Random Sets, Probability and Its Applications, Springer Verlag.
Norberg T. (1989) Existence theorems for measures on continuous posets, with applications to random set theory. Mathematica Scandinavica 64 1551.
Schalk A. (1993) Algebras for Generalized Power Constructions, Ph.D. thesis, Technische Universität Darmstadt.
Tix R. (1995) Stetige Bewertungen auf topologischen Räumen, Diplomarbeit, TH Darmstadt.
Tix R., Keimel K. and Plotkin G. (2005) Semantic domains for combining probability and non-determinism. Electronic Notes in Theoretical Computer Science 129 1104.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 91 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.