Home

Classical realizability and arithmetical formulæ

Abstract

In this paper, we treat the specification problem in Krivine classical realizability (Krivine 2009 Panoramas et synthèses 27), in the case of arithmetical formulæ. In the continuity of previous works from Miquel and the first author (Guillermo 2008 Jeux de réalisabilité en arithmétique classique, Ph.D. thesis, Université Paris 7; Guillermo and Miquel 2014 Mathematical Structures in Computer Science, Epub ahead of print), we characterize the universal realizers of a formula as being the winning strategies for a game (defined according to the formula). In the first sections, we recall the definition of classical realizability, as well as a few technical results. In Section 5, we introduce in more details the specification problem and the intuition of the game-theoretic point of view we adopt later. We first present a game 1, that we prove to be adequate and complete if the language contains no instructions ‘quote’ (Krivine 2003 Theoretical Computer Science 308 259–276), using interaction constants to do substitution over execution threads. We then show that as soon as the language contain ‘Quote,’ the game is no more complete, and present a second game 2 that is both adequate and complete in the general case. In the last Section, we draw attention to a model-theoretic point of view and use our specification result to show that arithmetical formulæ are absolute for realizability models.

References
Hide All
Barbanera F. and Berardi S. (1996). A symmetric lambda calculus for classical program extraction. Information and Computation 125 (2) 103117.
Barendregt H. (1984). The Lambdas Calculus: Its Syntax and Semantics, Studies in Logic and The Foundations of Mathematics, volume 103, North-Holland, Amsterdam.
Church A. (1941). The Calculi of Lambda-Conversion, Annals of Mathematical Studies, volume 6, issue 4, Princeton 171–172.
Coquand T. (1995). A semantics of evidence for classical arithmetic. Journal of Symbolic Logic 60 (1) 325337. doi: 10.2307/2275524. url: http://dx.doi.org/10.2307/2275524.
Curien P.-L. and Herbelin H. (September 2000). The duality of computation. In: Odersky M. and Wadler P. (eds.) Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP'00), ACM, Montreal, Canada 233–243.
Curry H. B. and Feys R. (1958). Combinatory Logic, volume 1, North-Holland, Amsterdam.
Friedman H. (1973). Some Applications of Kleene's Methods for Intuitionistic Systems, Cambridge Summer School in Mathematical Logic, Springer Lecture Notes in Mathematics, volume 337, Springer-Verlag 113170.
Friedman H. (1978). Classically and intuitionistically provably recursive functions. Higher Set Theory 669 (1978), 2128.
Girard J.-Y. (2006). Le point aveugle – cours de logique – volume I – vers la perfection, Hermann.
Girard J.-Y., Lafont Y. and Taylor P. (1989). Proofs and Types, Cambridge tracts in theoretical computer science, volume 7, Cambridge University Press.
Guillermo M. (2008). Jeux de réalisabilité en arithmétique classique, Ph.D. thesis, Université Paris 7.
Guillermo M. and Miquel A. (2014). Specifying Peirce's law in classical realizability. Mathematical Structures in Computer Science, Epub ahead of print, doi: 10.1017/S0960129514000450.
Howard W.A. (1980). The formulae-as-types notion of construction. In: Hind-ley J.R. and Seldin J.P. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, New York, 479490.
Hofstra P.J.W. and Cockett J.R.B. (2006). An introduction to partial lambda algebras. Available at: http://mysite.science.uottawa.ca/phofstra/lambda.pdf
Jean-Louis Krivine J.-L. (2015). On the structure of classical realizability models of ZF. In: Herbelin H., Letouzey P. and Sozeau M. (eds.) 20th International Conference on Types for Proofs and Programs (TYPES 2014), Leibniz International Proceedings in Informatics (LIPIcs), volume 39, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.
Jech T. (2013). Set Theory: The Third Millennium Edition, Revised and Expanded, 3rd edition, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg. isbn: 9783642078996. url: http://books.google.com.uy/books?id=70N-cgAACAAJ.
Kleene S.C. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic 10 (4) 109124.
Kreisel G. (1951). On the interpretation of non-finitist proofs–Part I. Journal of Symbolic Logic 16 (4) 241267.
Kreisel G. (1952). On the interpretation of non-finitist proofs: Part II. Interpretation of number theory. Applications. Journal of Symbolic Logic 17 (1) 4358.
Krivine J.-L. (1993). Lambda-Calculus, Types and Models, Ellis Horwood series in computers and their applications, Masson.
Krivine J.-L. (2000). The Curry-Howard correspondence in set theory. In: 15th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Santa Barbara, CA 307–308.
Krivine J.-L. (2001). Typed lambda-calculus in classical Zermelo-Fraenkel set theory. Archive for Mathematical Logic 40 (3) 189205.
Krivine J.-L. (2003). Dependent choice, ‘quote’ and the clock. Theoretical Computer Science 308 (1–3) 259276.
Krivine J.-L. (2007). A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation 20 (3) 199207.
Krivine J.-L. (2009). Realizability in classical logic. In interactive models of computation and program behaviour. Panoramas et synthèses 27 197229.
Krivine J.-L. (2011). Realizability algebras: A program to well order R. Logical Methods in Computer Science 7 (3) 147.
Krivine J.-L. (2012). Realizability algebras II: New models of ZF + DC. Logical Methods in Computer Science 8 (1) 128.
McCarty D. (1984). Realizability and Recursive Mathematics, Ph.D. thesis, Carnegie-Mellon University.
Miquel A. (2007). Classical program extraction in the calculus of constructions. In: Proceedings of the Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11–15. Springer Lecture Notes in Computer Science 4646 313327.
Miquel A. (2011a). Existential witness extraction in classical realizability and via a negative translation. Logical Methods for Computer Science 7 (2) (doi: 10.2168/LMCS-7(2:2)2011).
Miquel A. (2011b). Forcing as a program transformation. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Toronto, Ontario, Canada, 197–206.
Myhill J. (1973). Some properties of intuitionistic Zermelo-Fraenkel set theory. Lecture Notes in Mathematics 337 206231.
Oliva P. and Streicher T. (2008). On Krivine's realizability interpretation of classical second-order arithmetic. Fundamenta Informaticae 84 (2) 207220.
Parigot M. (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62 (4) 14611479.
Rieg L. (June 2014). On Forcing and Classical Realizability, Theses, Ecole normale supérieure de lyon - ENS LYON. url: https://tel.archives-ouvertes.fr/tel-01061442.
Recommend this journal

Mathematical Structures in Computer Science
• ISSN: 0960-1295
• EISSN: 1469-8072
• URL: /core/journals/mathematical-structures-in-computer-science
Who would you like to send this to? *

×

Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *