Abramsky, S. and Ong, C.-H. (1993). Full abstraction in the lazy lambda calculus. Information and Computation
105
(2)
159–267.

Aehlig, K. and Joachimski, F. (2002). On continuous normalization. In: Proceedings Workshop on Computer Science Logic (CSL 2002). Springer Lecture Notes in Computer Science
2471
59–73.

Barendregt, H. (1984). Studies in Logic and the Foundations of Mathematics. The Lambda Calculus. Its Syntax and Semantics, vol 103, North-Holland.

Barendregt, H. and Klop, J. (2009). Applications of infinitary lambda calculus. Information and Computation
207
(5)
559–582.

Berarducci, A. (1996). Infinite λ-calculus and non-sensible models. In: Logic and Algebra (Pontignano, 1994), Dekker, New York, 339–377.

Bethke, I. (2003). Lambda calculus. Chapter 10 in Terese (2003).

Bethke, I., Klop, J. and de Vrijer, R. (2000). Descendants and origins in term rewriting. Information and Computation
159
(1–2)
59–124.

Coquand, T. (1994). Infinite objects in type theory. In: Barendregt, H. and Nipkow, T. (eds.) TYPES, vol 806, Springer–Verlag, Berlin, 62–78.

Coquand, T. and Herbelin, H. (1994).
*A*-translation and looping combinators in pure type systems. Journal of Functional Programming
4
(1)
77–88.

Endrullis, J., Hendriks, D. and Klop, J. (2010). Modular construction of fixed point combinators and clocked Böhm trees. In: *Proceedings Symposium on Logic in Computer Science (LICS 2010)* 111–119.

Endrullis, J., Hendriks, D., Klop, J. W. and Polonsky, A. (2014). Discriminating Lambda-terms using clocked Böhm trees. Logical Methods in Computer Science
10
(2). doi: 10.2168/LMCS-10(2:4)2014.

Faustini, A. (1982). *The Equivalence of an Operational and a Denotational Semantics for Pure Dataflow*, Ph.D. thesis, University of Warwick.

Geuvers, H. and Werner, B. (1994). On the Church–Rosser property for expressive type systems and its consequences for their metatheoretic study. In: *Proceedings Symposium on Logic in Computer Science (LICS 1994)* 320–329.

Intrigila, B. (1997). Non-existent Statman's double fixed point combinator does not exist, indeed. Information and Computation
137
(1)
35–40.

Kennaway, R., Klop, J., Sleep, M. and de Vries, F.-J. (1997). Infinitary lambda calculus. Theoretic Computer Science
175
(1)
93–125.

Ketema, J. and Simonsen, J. (2009). Infinitary combinatory reduction systems: Confluence. Logical Methods in Computer Science
5
(4)
1–29.

Klop, J. (2007). New fixed point combinators from old. In: *Reflections on Type Theory, λ-Calculus, and the Mind. Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday* 197–210. Online version: http://www.cs.ru.nl/barendregt60.
Matthews, S. (1985). *Metric Domains for Completeness*, Ph.D. thesis, University of Warwick.

McCune, W. and Wos, L. (1991). The absence and the presence of fixed point combinators. Theoretic Compututer Science
87
(1)
221–228.

Naoi, T. and Inagaki, Y. (1989). Algebraic semantics and complexity of term rewriting systems. In: Proceedings of the Conference on Rewriting Techniques and Applications (RTA 1989). Springer Lecture Notes in Computer Science
355
311–325.

Park, D. (1983). The fairness problem and nondeterministic computing networks. Foundations of Computer Science IV, Distributed Systems: Part 2 (159) 133–161.

Plotkin, G. (1977). Lcf considered as a programming language. Theoretical Computer Science
5
(3)
223–255.

Plotkin, G. (2007). Personal communication at the symposium for H. Barendregt's 60th birthday.

Sangiorgi, D. and Rutten, J. (2012). Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science vol 52, Cambridge University Press.

Smullyan, R. (1985). To Mock a Mockingbird, and Other Logic Puzzles: Including an Amazing Adventure in Combinatory Logic, Knopf, New York.

Terese (2003). Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science vol **55**, Cambridge University Press.

Wadge, W. (1981). An extensional treatment of dataflow deadlock. Theoretical Computer Science
13
3–15.