Aceto, L., Fokkink, W. and Verhoef, C. (1999) Structural operational semantics. In: Handbook of Process Algebra, Elsevier
197–292.

Awodey, S. (2010) Category theory, Oxford Logic Guides, Oxford University Press.

Bartels, F. (2004) *On Generalised Coinduction and Probabilistic Specification Formats*, Ph.D. thesis, CWI, Amsterdam.

Bartels, F., Sokolova, A. and de Vink, E. P. (2004) A hierarchy of probabilistic system types. Theoretical Computer Science
327
(1–2)
3–22.

Bonchi, F., Bonsangue, M. M., Caltais, G., Rutten, J. J. M. M. and Silva, A. (2012) Final semantics for decorated traces. Electronic Notes in Theoretical Computer Science
286
73–86.

Bonchi, F., Caltais, G., Pous, D. and Silva, A. (2013) Brzozowski's and up-to algorithms for must testing. In: Chieh Shan, C. (ed.) Asian Symposium on Programming Languages and Systems. Springer Lecture Notes in Computer Science
8301
1–16.

Bonchi, F. and Pous, D. (2013) Checking NFA equivalence with bisimulations up to congruence. In: Giacobazzi, R. and Cousot, R. (eds.) Principles of Programming Languages, ACM
457–468.

Boreale, M. and Gadducci, F. (2006) Processes as formal power series: A coinductive approach to denotational semantics. Theoretical Computer Science
360
(1–3)
440–458.

Cancila, D., Honsell, F. and Lenisa, M. (2003) Generalized coiteration schemata. Electronic Notes in Theoretical Computer Science
82
(1)
79–93.

Cleaveland, R. and Hennessy, M. (1993) Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing
5
(1)
1–20.

Doberkat, E.-E. (2008) Erratum and addendum: Eilenberg–Moore algebras for stochastic relations. Information and Computation
206
(12)
1476–1484.

Hasuo, I., Jacobs, B. and Sokolova, A. (2007) Generic trace semantics via coinduction. Logical Methods in Computer Science
3
(4).

Hennessy, M. and Milner, R. (1985) Algebraic laws for nondeterminism and concurrency. Journal of the ACM
32
(1)
137–161.

Jou, C.-C. and Smolka, S. (1990) Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J. and Klop, J. (eds.) International conference on concurrency theory Theories of Concurrency: Unification and Extension. Springer Lecture Notes in Computer Science
458, 367–383.

Lenisa, M. (1999) From set-theoretic coinduction to coalgebraic coinduction: Some results, some problems. Electronic Notes in Theoretical Computer Science
19
2–22.

Lenisa, M., Power, J. and Watanabe, H. (2000) Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads. Electronic Notes in Theoretical Computer Science
33
230–260.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Monteiro, L. (2008) A coalgebraic characterization of behaviours in the linear time – branching time spectrum. In: Corradini, A. and Montanari, U. (eds.) Workshop on Algebraic Development Techniques. Springer Lecture Notes in Computer Science
5486
251–265.

Park, D. M. R. (1981) Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) Theoretical Computer Science. Springer Lecture Notes in Computer Science
104
167–183.

Rot, J., Bonsangue, M. M. and Rutten, J. J. M. M. (2013) Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F. C. A., Italiano, G. F., Nawrocki, J. R. and Sack, H. (eds.) SOFtware SEMinar. Springer Lecture Notes in Computer Science
7741
369–381.

Rosu, G. and Lucanu, D. (2009) Circular coinduction: A proof theoretical foundation. In: *Conference on Algebra and Coalgebra in Computer Science*, 127–144.

Rutten, J. J. M. M. (2000) Universal coalgebra: A theory of systems. Theoretical Computer Science
249
(1)
3–80.

Sangiorgi, D. and Rutten, J. (2011) Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

Silva, A., Bonchi, F., Bonsangue, M. M. and Rutten, J. J. M. M. (2010) Generalizing the powerset construction, coalgebraically. In: Lodaya, K. and Mahajan, M. (eds.), Conference of Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics
8
272–283.

Silva, A., Bonchi, F., Bonsangue, M. M. and Rutten, J. J. M. M. (2013) Generalizing determinization from automata to coalgebras. Logical Methods in Computer Science
9
(1).

van Glabbeek, R. (2001) The linear time – branching time spectrum I. The semantics of concrete, sequential processes. In: Bergstra, J., Ponse, A. and Smolka, S. (eds.) Handbook of Process Algebra, Elsevier
3–99.