Skip to main content
    • Aa
    • Aa

Coinductive predicates and final sequences in a fibration

  • ICHIRO HASUO (a1), TOSHIKI KATAOKA (a1) (a2) and KENTA CHO (a3)

Coinductive predicates express persisting ‘safety’ specifications of transition systems. Previous observations by Hermida and Jacobs identify coinductive predicates as suitable final coalgebras in a fibration – a categorical abstraction of predicate logic. In this paper, we follow the spirit of a seminal work by Worrell and study final sequences in a fibration. Our main contribution is to identify some categorical ‘size restriction’ axioms that guarantee stabilization of final sequences after ω steps. In its course, we develop a relevant categorical infrastructure that relates fibrations and locally presentable categories, a combination that does not seem to be studied a lot. The genericity of our fibrational framework can be exploited for binary relations (i.e. the logic of ‘binary predicates’) for which a coinductive predicate is bisimilarity, constructive logics (where interests are growing in coinductive predicates) and logics for name-passing processes.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 91 *
Loading metrics...

* Views captured on Cambridge Core between 18th April 2017 - 25th September 2017. This data will be updated every 24 hours.