Ash, C.J. and Knight, J.F. (2000). Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, Elsevier.

Brattka, V. and Gherardi, G. (2009). Borel complexity of topological operations on computable metric spaces. Journal of Logic and Computation
19
(1)
45–76.

Brodhead, P. and Cenzer, D.A. (2008). Effectively closed sets and enumerations. Archive for Mathematical Logic
46
(7–8)
565–582.

Calvert, W., Fokina, E., Goncharov, S.S., Knight, J.F., Kudinov, O.V., Morozov, A.S. and Puzarenko, V. (2007). Index sets for classes of high rank structures. Journal of Symbolic Computation
72
(4)
1418–1432.

Calvert, W., Harizanov, V.S., Knight, J.F. and Miller, S. (2006). Index sets of computable structures. Journal of Algebra and Logic
45
(5)
306–325.

Cenzer, D.A. and Remmel, J.B. (1998). Index sets for Π^{0}
_{1} classes. Annals of Pure and Applied Logic
93
(1–3)
3–61.

Cenzer, D.A. and Remmel, J.B. (1999). Index sets in computable analysis. Theoretical Computer Science
219
(1–2)
111–150.

Delzell, C.N. (1982). A finiteness theorem for open semi-algebraic sets, with application to Hilbert's 17th problem. In: Ordered Fields and Real Algebraic Geometry, Contemporary Mathematics, vol. 8, AMS, 79–97.

Downey, R.G., Hirschfeldt, D.R. and Khoussainov, B. (2003). Uniformity in computable structure theory. Journal of Algebra and Logic
42
(5)
318–332.

Downey, R.G. and Montalban, A. (2008). The isomorphism problem for torsion-free Abelian groups is analytic complete. Journal of Algebra
320
(6)
2291–2300.

Ershov, Yu. L. (1973). Theorie der Numerierungen I. Zeitschrift fur Mathematische Logik Grundlagen der Mathematik
19
(19–25)
289–388.

Ershov, Yu. L. (1977). Model
of partial continuous functionals. In: Logic Colloquium 76, North-Holland, 455–467.
Ershov, Yu. L. (1999). Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, Elsevier Science B.V., 473–503.

Frolov, A., Harizanov, V., Kalimullin, I., Kudinov, O. and Miller, R. (2012). Spectra of high_{
n
} and nonlow_{
n
} degrees. Electronic Notes in Theoretical Computer Science
22
(4)
755–777.

Grubba, T. and Weihrauch, K. (2007). On computable metrization. Electronic Notes in Theoretical Computer Science
167
345–364.

Hodges, W. (1993). Model theory. In: Encyclopedia of Mathematics, Cambridge University Press.

Kechris, A.S. (1995). Classical Descriptive Set Theory, Springer-Verlag.

Kolmogorov, A.N. and Fomin, S.V. (1999). Elements of the Theory of Functions and Functional Analysis, Dover Publications.

Korovina, M.V. (2003). Computational aspects of Σ-definability over the real numbers without the equality test. In: Baaz, M. and Makowsky, J.A. (eds.) CSL'03, Lecture Notes in Computer Science, vol. 2803, Springer, 330–344.

Korovina, M.V. and Kudinov, O.V. (2005). Towards computability of higher type continuous data. In: *Proceedings CiE'05*, Lecture Notes in Computer Science, vol. 3526, Springer-Verlag, 235–241.

Korovina, M.V. and Kudinov, O.V. (2008). Towards computability over effectively enumerable topological spaces. Electronic Notes in Theoretical Computer Science
221
115–125.

Korovina, M.V. and Kudinov, O.V. (2009). The uniformity principle for sigma-definability. Journal of Logic and Computation
19
(1)
159–174.

Korovina, M.V. and Kudinov, O.V. (2015a). Positive predicate structures for continuous data. Journal of Mathematical Structures in Computer Science
25
(8)
1669–1684.

Korovina, M.V. and Kudinov, O.V. (2015b). Index sets as a measure of continuous constraints complexity. Lecture Notes in Computer Science vol. 8974, Springer, 201–215.

Montalban, A. and Nies, A. (2013). Borel structures: A brief survey. Lecture Notes in Logic
41, 124–134.

Moschovakis, Y.N. (1964). Recursive metric spaces. Fundamenta Mathematicae
55
215–238.

Moschovakis, Y.N. (2009). Descriptive Set Theory. North-Holland.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability, McGraw-Hill.

Soare, R.I. (1987). Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer Science and Business Media.

Shoenfield, J.R. (1971). Degrees of Unsolvability, North-Holland Publisher.

Selivanov, V. (1988). Index sets of factor-objects of the Post numbering. Algebra and Logic
27
(3)
215–224.

Selivanov, V. (2015). Towards the effective descriptive set theory. Lecture Notes in Computer Science
9136
324–333.

Selivanov, V. and Schröder, M. (2014). Hyperprojective hierarchy of *qcb*
_{0}-space. Journal of Computability
4
(1)
1–17.

Spreen, D. (1984). On r.e. inseparability of cpo index sets. In: Logic and Machines: Decision Problems and Complexity, Lecture Notes in Computer Science, vol. 171, Springer, 103–117.

Spreen, D. (1995). On some decision problems in programming. Information and Computation
122
(1)
120–139.

Spreen, D. (1998). On effective topological spaces. Journal of Symbolic Logic
63
(1)
185–221.

Weihrauch, K. (1993). Computability on computable metric spaces. Theoretical Computer Science
113
(1)
191–210.

Weihrauch, K. (2000). Computable Analysis, Springer-Verlag.

Weihrauch, K. and Deil, Th. (1980). Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u. Informatik vol. 63. RWTH Aachen.