Ash, C.J. and Knight, J.F. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, **144**, Elsevier.

Becher, V., Heiber, P. and Slaman, T.A. (2014). Normal numbers and the Borel hierarchy. Fundamenta Mathematicae
22, 63–77.

Berger, U. (1993). Total sets and objects in domain theory. Annals of Pure and Applied Logic
60
(2)
91–117.

Brattka, V. (2001). Computable versions of Baire's category theorem. In: MFCS'99. Springer Lecture Notes in Computer Science
2136
224–235.

Brattka, V. and Gherardi, G. (2009). Borel complexity of topological operations on computable metric spaces. Journal of Logic and Computation
19
(1)
45–76.

Brattka, V. and Gherardi, G. (2011). Weihrauch degrees, omniscience principles and weak computability. Journal of Symbolic Logic
76
(1)
143–176.

Brattka, V. and Weihrauch, K. (1999). Computability on subsets of euclidean space I: Closed and compact sets. Theoretical Computer Science
219
(1–2)
65–93.

Brodhead, P. and Cenzer, D.A. (2008). Effectively closed sets and enumerations. Archive for Mathematical Logic
46
(7–8)
565–582.

Calvert, W., Fokina, E., Goncharov, S.S., Knight, J.F., Kudinov, O.V., Morozov, A.S. and Puzarenko, V. (2007). Index sets for classes of high rank structures. Journal of Symbolic Logic
72
(4)
1418–1432.

Calvert, W., Harizanov, V.S., Knight, J.F. and Miller, S. (2006). Index sets of computable structures. Journal Algebra and Logic
45
(5)
306–325.

Ceitin, G.S. (1971). Mean value theorems in constructive analysis. American Mathematical Society Translations: Series 2 98
11–40.

Cenzer, D.A. and Remmel, J.B. (1998). Index sets for Π^{0}
_{1} classes. Annals of Pure and Applied Logic
93
(1–3)
3–61.

Cenzer, D.A. and Remmel, J.B. (1999). Index sets in computable analysis. Theoretical Computer Science
219
(1–2)
111–150.

Delzell, C.N. (1982). A finiteness theorem for open semi-algebraic sets, with application to Hilbert's 17th problem. In: Ordered Fields and Real Algebraic Geometry, Contemp. Math., **8**, AMS
79–97.

Downey, R.G., Hirschfeldt, D.R. and Khoussainov, B. (2003). Uniformity in computable structure theory. Journal of Algebra and Logic
42
(5)
318–332.

Downey, R.G. and Montalban, A. (2008). The isomorphism problem for torsion-free Abelian groups is analytic complete. Journal of Algebra
320
2291–2300.

Ershov, Yu.L. (1973). Theorie der Numerierungen I. Zeitschrift fur mathematische Logik Grundlagen der Mathematik
19
289–388.

Ershov, Yu.L. (1977). Model
of partial continuous functionals. In: Logic Colloquium, **76**, North-Holland
455–467.

Ershov, Yu.L. (1999). Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, Elsevier Science B.V., 473–503.

Frolov, A., Harizanov, V., Kalimullin, I., Kudinov, O. and Miller, R. (2012). Spectra of high*
*_{n}
and nonlow*
*_{n}
degrees. Electronic Notes in Theoretical Computer Science
22
(4)
755–777.

Gierz, G., HeinrichAAAAHofmann, K., Keime, K., Lawson, J.D. and Mislove, M.W. (2003). Continuous Lattices and Domain. Encyclopedia of Mathemtics and its Applications **93**, Cambridge University Press.

Grubba, T. and Weihrauch, K. (2007). On computable metrization. Electronic Notes in Theoretical Computer Science
167, 345–364.

Grubba, T. and Weihrauch, K. (2009). Elementary computable topology. Journal of UCS
15
(6)
1381–1422.

Korovina, M.V. (2003a). Gandy's theorem for abstract structures without the equality test. In: Vardi, M.Y. and Voronkov, A. (eds.) LPAR'03. Springer Lecture Notes in Computer Science
2850
290–301.

Korovina, M.V. (2003b). Computational aspects of Σ-definability over the real numbers without the equality test. In: Baaz, M. and Makowsky, J.A. (eds.) CSL'03. Springer Lecture Notes in Computer Science, 2803
330–344.

Korovina, M.V. and Kudinov, O.V. (2015). Positive predicate structures for continuous data. Journal of Mathematical Structures in Computer Science
25
(8), 1669–1684.

Korovina, M.V. and Kudinov, O.V. (2005). Towards computability of higher type continuous data. In: Proceedings of the CiE'05. Springer-Verlag Lecture Notes in Computer Science
3526
235–241.

Korovina, M.V. and Kudinov, O.V. (2008). Towards computability over effectively enumerable topological spaces. Electronic Notes in Theoretical Computer Science
221
115–125.

Korovina, M.V. and Kudinov, O.V. (2009). The Uniformity Principle for Sigma-definability. Journal of Logic and Computation
19
(1)
159–174.

Martin-Löf, P. (1970). Notes on Constructive Mathematics. Almqvist & Wiksell.

Montalban, A. and Nies, A. (2013). Borel structures: A brief survey. Lecture Notes in Logic
41
124–134.

Morozov, A.S. and Korovina, M.V. (2008). On Σ-definability without equality over the real numbers. Mathematical Logic Quarterly
54
(5)
535–544.

Moschovakis, Y.N. (1964). Recursive metric spaces. Fundamenta Mathematicae
55
215–238.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability, McGraw-Hill.

Selivanov, V. and Schröder, M. (2014) Hyperprojective hierarchy of *qcb*
_{0}-Space. Journal Computability
4
(1)
1–17, North-Holland.

Shoenfield, J.R. (1971). Degrees of Unsolvability, North-Holland Publ.

Soare, R.I. (1987). Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer Science and Business Media.

Spreen, D. (1984). On r.e. inseparability of cpo index sets. Logic and Machines: Decision Problems and Complexity, Lecture Notes in Computer Science
171
103–117.

Spreen, D. (1995). On some decision problems in programming. Information and Computation
122
(1)
120–139.

Spreen, D. (1998). On effective topological spaces. Journal of Symbolic Logic
63
(1)
185–221.

Weihrauch, K. (1993) Computability on computable metric Spaces. Theoretical Computer Science
113
(1)
191–210.

Weihrauch, K. (2000). Computable Analysis, Springer Verlag.

Weihrauch, K. and Deil, Th. (1980) Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u. Informatik
**63**. RWTH Aachen.

Welch, L.V. (1984). A hierarchy of families of recursively enumerable degrees. Journal of Symbolic Logic
49
(4)
1160–1170.

Yates, C.E.M. (1965). Three theorems of the degrees of recursively enumerable sets. Duke Mathematical Journal
32
(3)
461–468.

Yates, C.E.M. (1969). On the degrees of index sets II. Transactions of the American Mathematical Society
135
249–266.