Skip to main content

Computable elements and functions in effectively enumerable topological spaces


This paper is a part of the ongoing program of analysing the complexity of various problems in computable analysis in terms of the complexity of the associated index sets. In the framework of effectively enumerable topological spaces, we investigate the following question: given an effectively enumerable topological space whether there exists a computable numbering of all its computable elements. We present a natural sufficient condition on the family of basic neighbourhoods of computable elements that guarantees the existence of a principal computable numbering. We show that weakly-effective ω–continuous domains and the natural numbers with the discrete topology satisfy this condition. We prove weak and strong analogues of Rice's theorem for computable elements. Then, we construct principal computable numberings of partial majorant-computable real-valued functions and co-effectively closed sets and calculate the complexity of index sets for important problems such as root verification and function equality. For example, we show that, for partial majorant-computable real functions, the equality problem is Π1 1-complete.

Hide All
Ash, C.J. and Knight, J.F. (2000). Computable Structures and the Hyperarithmetical Hierarchy. Studies in Logic and the Foundations of Mathematics, 144, Elsevier.
Becher, V., Heiber, P. and Slaman, T.A. (2014). Normal numbers and the Borel hierarchy. Fundamenta Mathematicae 22, 6377.
Berger, U. (1993). Total sets and objects in domain theory. Annals of Pure and Applied Logic 60 (2) 91117.
Brattka, V. (2001). Computable versions of Baire's category theorem. In: MFCS'99. Springer Lecture Notes in Computer Science 2136 224235.
Brattka, V. and Gherardi, G. (2009). Borel complexity of topological operations on computable metric spaces. Journal of Logic and Computation 19 (1) 4576.
Brattka, V. and Gherardi, G. (2011). Weihrauch degrees, omniscience principles and weak computability. Journal of Symbolic Logic 76 (1) 143176.
Brattka, V. and Weihrauch, K. (1999). Computability on subsets of euclidean space I: Closed and compact sets. Theoretical Computer Science 219 (1–2) 6593.
Brodhead, P. and Cenzer, D.A. (2008). Effectively closed sets and enumerations. Archive for Mathematical Logic 46 (7–8) 565582.
Calvert, W., Fokina, E., Goncharov, S.S., Knight, J.F., Kudinov, O.V., Morozov, A.S. and Puzarenko, V. (2007). Index sets for classes of high rank structures. Journal of Symbolic Logic 72 (4) 14181432.
Calvert, W., Harizanov, V.S., Knight, J.F. and Miller, S. (2006). Index sets of computable structures. Journal Algebra and Logic 45 (5) 306325.
Ceitin, G.S. (1971). Mean value theorems in constructive analysis. American Mathematical Society Translations: Series 2 98 1140.
Cenzer, D.A. and Remmel, J.B. (1998). Index sets for Π0 1 classes. Annals of Pure and Applied Logic 93 (1–3) 361.
Cenzer, D.A. and Remmel, J.B. (1999). Index sets in computable analysis. Theoretical Computer Science 219 (1–2) 111150.
Delzell, C.N. (1982). A finiteness theorem for open semi-algebraic sets, with application to Hilbert's 17th problem. In: Ordered Fields and Real Algebraic Geometry, Contemp. Math., 8, AMS 7997.
Downey, R.G., Hirschfeldt, D.R. and Khoussainov, B. (2003). Uniformity in computable structure theory. Journal of Algebra and Logic 42 (5) 318332.
Downey, R.G. and Montalban, A. (2008). The isomorphism problem for torsion-free Abelian groups is analytic complete. Journal of Algebra 320 22912300.
Ershov, Yu.L. (1973). Theorie der Numerierungen I. Zeitschrift fur mathematische Logik Grundlagen der Mathematik 19 289388.
Ershov, Yu.L. (1977). Model $\mathbb{C}$ of partial continuous functionals. In: Logic Colloquium, 76, North-Holland 455467.
Ershov, Yu.L. (1999). Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, Elsevier Science B.V., 473503.
Frolov, A., Harizanov, V., Kalimullin, I., Kudinov, O. and Miller, R. (2012). Spectra of high n and nonlow n degrees. Electronic Notes in Theoretical Computer Science 22 (4) 755777.
Gierz, G., HeinrichAAAAHofmann, K., Keime, K., Lawson, J.D. and Mislove, M.W. (2003). Continuous Lattices and Domain. Encyclopedia of Mathemtics and its Applications 93, Cambridge University Press.
Grubba, T. and Weihrauch, K. (2007). On computable metrization. Electronic Notes in Theoretical Computer Science 167, 345364.
Grubba, T. and Weihrauch, K. (2009). Elementary computable topology. Journal of UCS 15 (6) 13811422.
Korovina, M.V. (2003a). Gandy's theorem for abstract structures without the equality test. In: Vardi, M.Y. and Voronkov, A. (eds.) LPAR'03. Springer Lecture Notes in Computer Science 2850 290301.
Korovina, M.V. (2003b). Computational aspects of Σ-definability over the real numbers without the equality test. In: Baaz, M. and Makowsky, J.A. (eds.) CSL'03. Springer Lecture Notes in Computer Science, 2803 330344.
Korovina, M.V. and Kudinov, O.V. (2015). Positive predicate structures for continuous data. Journal of Mathematical Structures in Computer Science 25 (8), 16691684.
Korovina, M.V. and Kudinov, O.V. (2005). Towards computability of higher type continuous data. In: Proceedings of the CiE'05. Springer-Verlag Lecture Notes in Computer Science 3526 235241.
Korovina, M.V. and Kudinov, O.V. (2008). Towards computability over effectively enumerable topological spaces. Electronic Notes in Theoretical Computer Science 221 115125.
Korovina, M.V. and Kudinov, O.V. (2009). The Uniformity Principle for Sigma-definability. Journal of Logic and Computation 19 (1) 159174.
Martin-Löf, P. (1970). Notes on Constructive Mathematics. Almqvist & Wiksell.
Montalban, A. and Nies, A. (2013). Borel structures: A brief survey. Lecture Notes in Logic 41 124134.
Morozov, A.S. and Korovina, M.V. (2008). On Σ-definability without equality over the real numbers. Mathematical Logic Quarterly 54 (5) 535544.
Moschovakis, Y.N. (1964). Recursive metric spaces. Fundamenta Mathematicae 55 215238.
Rogers, H. (1967). Theory of Recursive Functions and Effective Computability, McGraw-Hill.
Selivanov, V. and Schröder, M. (2014) Hyperprojective hierarchy of qcb 0-Space. Journal Computability 4 (1) 117, North-Holland.
Shoenfield, J.R. (1971). Degrees of Unsolvability, North-Holland Publ.
Soare, R.I. (1987). Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Springer Science and Business Media.
Spreen, D. (1984). On r.e. inseparability of cpo index sets. Logic and Machines: Decision Problems and Complexity, Lecture Notes in Computer Science 171 103117.
Spreen, D. (1995). On some decision problems in programming. Information and Computation 122 (1) 120139.
Spreen, D. (1998). On effective topological spaces. Journal of Symbolic Logic 63 (1) 185221.
Weihrauch, K. (1993) Computability on computable metric Spaces. Theoretical Computer Science 113 (1) 191210.
Weihrauch, K. (2000). Computable Analysis, Springer Verlag.
Weihrauch, K. and Deil, Th. (1980) Berechenbarkeit auf cpo-s. Schriften zur Angew. Math. u. Informatik 63. RWTH Aachen.
Welch, L.V. (1984). A hierarchy of families of recursively enumerable degrees. Journal of Symbolic Logic 49 (4) 11601170.
Yates, C.E.M. (1965). Three theorems of the degrees of recursively enumerable sets. Duke Mathematical Journal 32 (3) 461468.
Yates, C.E.M. (1969). On the degrees of index sets II. Transactions of the American Mathematical Society 135 249266.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 147 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.