Published online by Cambridge University Press: 19 August 2021
A uniform approach to computing with infinite objects like real numbers, tuples of these, compacts sets and uniformly continuous maps is presented. In the work of Berger, it was shown how to extract certified algorithms working with the signed digit representation from constructive proofs. Berger and the present author generalised this approach to complete metric spaces and showed how to deal with compact sets. Here, we unify this work and lay the foundations for doing a similar thing for the much more comprehensive class of compact Hausdorff spaces occurring in applications. The approach is of the same computational power as Weihrauch’s Type-Two Theory of Effectivity.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.