Skip to main content
×
Home

A constructive interpretation of Ramsey's theorem via the product of selection functions

  • PAULO OLIVA (a1) and THOMAS POWELL (a1)
Abstract

We use Gödel's dialectica interpretation to produce a computational version of the well-known proof of Ramsey's theorem by Erdős and Rado. Our proof makes use of the product of selection functions, which forms an intuitive alternative to Spector's bar recursion when interpreting proofs in analysis. This case study is another instance of the application of proof theoretic techniques in mathematics.

Copyright
References
Hide All
Avigad J. (2009) The metamathematics of ergodic theory. Annals of Pure and Applied Logic 157 6476.
Avigad J. and Feferman S. (1998) Gödel's functional (‘Dialectica’) interpretation. In: Buss S. R. (ed.) Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics volume 137, North Holland, Amsterdam 337405.
Bellin G. (1990) Ramsey interpreted: A parametric version of Ramsey's theorem. In: Logic and Computation (Pittsburgh, PA, 1987), volume 106, American Mathematical Society, Providence, Rhode Island, U.S.A 1737.
Coquand T. (1994a) An analysis of Ramsey's theorem. Information and Computation 110 (2) 297304.
Coquand T. (1994b) A direct proof of Ramsey's theorem. Available at http://www.cse.chalmers.se/~coquand/ramsey2.pdf.
Erdős P., Hajnal A., Máté A. and Rado R. (1984) Combinatorial Set Theory: Partition Relations for Cardinals, Studies in Logic and the Foundations of Mathematics volume 106, North-Holland Publishing Company.
Escardó M. H. and Oliva P. (2010a) Computational interpretations of analysis via products of selection functions. In: Ferreira F., Lowe B., Mayordomo E. and Gomes L. M. (eds.) Computability in Europe 2010. Springer Lecture Notes in Computer Science 6158, 141150.
Escardó M. H. and Oliva P. (2010b) Selection functions, bar recursion, and backward induction. Mathematical Structures in Computer Science 20 (2) 127168.
Escardó M. H. and Oliva P. (2011) Sequential games and optimal strategies. Royal Society Proceedings A 467 15191545.
Escardó M. H. and Oliva P. (2012) Computing Nash equilibria of unbounded games. In: Proceedings of the Turing 100 Conference. Turing 100, Manchester.
Escardó M. H., Oliva P. and Powell T. (2011) System T and the product of selection functions. In: Proceedings of CSL'11, Leibniz International Proceedings in Informatics 12 233247.
Gödel K. (1958) Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12 280287.
Kohlenbach U. (2008) Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Monographs in Mathematics, Springer.
Kohlenbach U. and Kreuzer A. (2009) Ramsey's theorem for pairs and provably recursive functions. Notre Dame Journal of Formal Logic 50 427444.
Kreisel G. (1951) On the interpretation of non-finitist proofs, part I. Journal of Symbolic Logic 16 241267.
Kreisel G. (1952) On the interpretation of non-finitist proofs, part II: Interpretation of number theory. Journal of Symbolic Logic 17 4358.
Kreuzer A. (2009) Der Satz von Ramsey für Paare und beweisbar rekursive Funktionen, Diploma thesis, Technische Universität Darmstadt.
Oliva P. and Powell T. (2012) A game-theoretic computational interpretation of proofs in classical analysis. (Preprint available at arxiv.org/abs/1204.5244.)
Ramsey F. (1930) On a problem of formal logic. In: Proceedings of the London Mathematical Society s2–30 (1) 264286.
Simpson S. G. (1999) Subsystems of Second Order Arithmetic, Perspectives in Mathematical Logic, Springer, Berlin.
Spector C. (1962) Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: Dekker F. D. E. (ed.) Recursive Function Theory: Proceedings Symposia in Pure Mathematics, volume 5, American Mathematical Society, Providence, Rhode Island 127.
Tao T. (2008) Structure and Randomness: Pages from Year one of a Mathematical Blog, American Mathematical Society.
Veldman W. and Bezem M. (1993) Ramsey's theorem and the pigeonhole principle in intuitionistic mathematics. Journal of the London Mathematical Society 2 (47) 193211.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 142 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd November 2017. This data will be updated every 24 hours.