Skip to main content

Control categories and duality: on the categorical semantics of the lambda-mu calculus

    • Published online: 01 March 2001

We give a categorical semantics to the call-by-name and call-by-value versions of Parigot's λμ-calculus with disjunction types. We introduce the class of control categories, which combine a cartesian-closed structure with a premonoidal structure in the sense of Power and Robinson. We prove, via a categorical structure theorem, that the categorical semantics is equivalent to a CPS semantics in the style of Hofmann and Streicher. We show that the call-by-name λμ-calculus forms an internal language for control categories, and that the call-by-value λμ-calculus forms an internal language for the dual co-control categories. As a corollary, we obtain a syntactic duality result: there exist syntactic translations between call-by-name and call-by-value that are mutually inverse and preserve the operational semantics. This answers a question of Streicher and Reus.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th March 2018. This data will be updated every 24 hours.