Skip to main content
×
Home
    • Aa
    • Aa

Converging from branching to linear metrics on Markov chains

  • GIORGIO BACCI (a1), GIOVANNI BACCI (a1), KIM G. LARSEN (a1) and RADU MARDARE (a1)
Abstract

We study two well-known linear-time metrics on Markov chains (MCs), namely, the strong and strutter trace distances. Our interest in these metrics is motivated by their relation to the probabilistic linear temporal logic (LTL)-model checking problem: we prove that they correspond to the maximal differences in the probability of satisfying the same LTL and LTL−X (LTL without next operator) formulas, respectively.

The threshold problem for these distances (whether their value exceeds a given threshold) is NP-hard and not known to be decidable. Nevertheless, we provide an approximation schema where each lower and upper approximant is computable in polynomial time in the size of the MC.

The upper approximants are bisimilarity-like pseudometrics (hence, branching-time distances) that converge point-wise to the linear-time metrics. This convergence is interesting in itself, because it reveals a non-trivial relation between branching and linear-time metric-based semantics that does not hold in equivalence-based semantics.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 59 *
Loading metrics...

* Views captured on Cambridge Core between 25th July 2017 - 26th September 2017. This data will be updated every 24 hours.