Skip to main content
×
×
Home

A correspondence between maximal abelian sub-algebras and linear logic fragments

  • THOMAS SEILLER (a1)
Abstract

We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier (Dixmier 1954. Annals of Mathematics 59 (2) 279–286) and fragments of linear logic. We expose for this purpose a modified construction of Girard's hyperfinite geometry of interaction (Girard 2011. Theoretical Computer Science 412 (20) 1860–1883). The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions.

Copyright
References
Hide All
Abramsky, S., Haghverdi, E. and Scott, P. (2002). Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12 (05) 625665.
Aubert, C., Bagnol, M. and Seiller, T. (2016). Unary resolution: Characterizing Ptime. In: Jacobs, B. and Löding, C. (eds.) FOSSACS 2016. Lecture Notes in Computer Science 9634 373389.
Aubert, C. and Seiller, T. (2016a). Characterizing co-nl by a group action. Mathematical Structures in Computer Science 26 (4) 606638.
Aubert, C. and Seiller, T. (2016b). Logarithmic space and permutations. Information and Computation. Available at: http://dx.doi.org/10.1016/j.ic.2014.01.018 (Available online 6 January 2016).
Baillot, P. and Pedicini, M. (2001). Elementary complexity and geometry of interaction. Fundamenta Informaticae 45 (1–2) 131.
Connes, A., Feldman, J. and Weiss, B. (1981). An amenable equivalence relation is generated by a single transformation. Ergodic Theory and Dynamical Systems 1 (4) 431450.
Chifan, I. (2007). On the normalizing algebra of a masa in a II1 factor. Preprint, 2007.
Curien, P.-L. (2006). Introduction to linear logic and ludics. Advances in Mathematics (China) 35 (1) 144.
Dixmier, J. (1954). Sous-anneaux abéliens maximaux dans les facteurs de type fini. Annals of Mathematics 59 (2) 279286.
Danos, V. and Regnier, L. (1993). Local and asynchronous beta-reduction (an analysis of girardís execution formula). In: Proceedings of the 18th Annual Symposium on Logic in Computer Science (LICS '93), Montreal, Canada, June 19–23, 1993, IEEE Computer Society, 296–306.
Danos, V. and Regnier, L. (1999). Reversible, irreversible and optimal λ-machines. Theoretical Computer Science 227 (1–2) 7997.
Duchesne, E. (2009). La localisation en logique: géométrie de l'interaction et sémantique dénotationelle. PhD thesis, Université de la Méditerranée, 2009.
Dye, H.A. (1963). On groups of measure preserving transformations. II. American Journal of Mathematics 85 (4) 551576.
Feldman, J. and Moore, C.C. (1977a). Ergodic equivalence relations, cohomology, and von neumann algebras. I. Transactions of the American Mathematical Society 234 (2) 289324.
Feldman, J. and Moore, C.C. (1977b). Ergodic equivalence relations, cohomology, and von neumann algebras. II. Transactions of the American Mathematical Society 234 (2) 325359.
Fuglede, B. and Kadison, R.V. (1952). Determinant theory in finite factors. Annals of Mathematics 56 (3) 520530.
Gelfand, I. (1941). Normierte ringe. Matematicheskii Sbornik 51 (1) 324.
Girard, J.-Y. (1987a). Linear logic. Theoretical Computer Science 50 (1) 1101.
Girard, J.-Y. (1987b). Multiplicatives. In: Lolli, G. (ed.) Logic and Computer Science: New Trends and Applications, Torino, Università di Torino. Rendiconti del seminario matematico dell'università e politecnico di Torino, special issue pp. 11–34.
Girard, J.-Y. (1988). Geometry of interaction II: Deadlock-free algorithms. In: Proceedings of COLOG. Lecture Notes in Computer Science 417, 7693, Springer.
Girard, J.-Y. (1989a). Geometry of interaction I: Interpretation of system F. In: Proceedings of the Logic Colloquium '88 221–260.
Girard, J.-Y. (1989b). Towards a geometry of interaction. In: Proceedings of the AMS Conference on Categories, Logic and Computer Science 69–108.
Girard, J.-Y. (1995a). Geometry of interaction III: Accommodating the additives. In: Advances in Linear Logic, Lecture Notes Series, volume 222, 329389, Cambridge University Press.
Girard, J.-Y. (1995b). Proof nets: The parallel syntax for proof theory. In: Ursini, A. (ed.) Logic and Algebra, Lecture Notes in Pure and Applied Mathematics, volume 180, Marcel Dekker.
Girard, J.-Y. (2001). Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11 (3) 301506.
Girard, J.-Y. (2006). Geometry of interaction IV: The feedback equation. In: Stoltenberg-Hansen, V. and Väänänen, J. (eds.) Logic Colloquium '03, Lecture Notes in Logic 24, Association for Symbolic Logic, La Jolla, CA, USA 76117.
Girard, J.-Y. (2007). Le point aveugle, tome 2 : vers l'imperfection. Vision des Sciences.
Girard, J.-Y. (2011). Geometry of interaction V: Logic in the hyperfinite factor. Theoretical Computer Science 412 (20) 18601883.
Gonthier, G., Abadi, A. and Lévy, J.-J. (1992). The geometry of optimal lambda reduction. In: Sethi, R. (ed.) POPL, pp. 1526, ACM Press.
Haagerup, U. (1975). The standard form of von neumann algebras. Mathematica Scandinavica 37 271283.
Haghverdi, E. and Scott, P. (2005). From geometry of interaction to denotational semantics. Proceedings of the 10th Conference on Category Theory in Computer Science (CTCS 2004) Category Theory in Computer Science 2004. Electronic Notes in Theoretical Computer Science 122 6787.
Haghverdi, E. and Scott, P. (2006). A categorical model for the geometry of interaction. Theoretical Computer Science 350 (2) 252274.
Hyland, J.M.E. and Luke Ong, C.-H. (2000). On full abstraction for PCF: I, II, and III. Information and Computation 163 (2) 285408.
Jones, V.F.R. and Popa, S. (1982). Some properties of masas in factors. In: Invariant Subspaces and Other Topics, Operator Theory: Advances and Applications, Volume 6, 89102, Birkhäuser Basel.
Krivine, J.-L. (2001). Typed lambda-calculus in classical zermelo-fraenkel set theory. Archive for Mathematical Logic 40 (3) 189205.
Krivine, J.-L. (2009). Realizability in classical logic. In: Interactive Models of Computation and Program Behaviour, volume 27, Panoramas et synthèses, Société Mathématique de France, 197–229.
Lago, U.D. (2009). The geometry of linear higher-order recursion. ACM Transactions on Computational Logic 10 (2) 8:18:38.
Laurent, O. (2001). A token machine for full geometry of interaction (extended abstract). In: Abramsky, S. (ed.) Typed Lambda Calculi and Applications '01. Lecture Notes in Computer Science 2044 283297, Springer.
Miquel, A. (2011). A survey of classical realizability. In: Luke Ong, C.-H. (ed.) Proceedings of Typed Lambda Calculi and Applications – 10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1–3, 2011. Lecture Notes in Computer Science 6690 12, Springer.
Murray, F. and von Neumann, J. (1936). On rings of operators. Annals of Mathematics 37 (2) 116229.
Murray, F. and von Neumann, J. (1937). On rings of operators. II. Transactions of the American Mathematical Society 41 (2) 208248.
Murray, F. and von Neumann, J. (1943). On rings of operators. IV. Annals of Mathematics 44 (4) 716808.
Naibo, A., Petrolo, M. and Seiller, T. (2016). On the computational meaning of axioms. In: Pombo, O., Nepomuceno, A. and Redmond, J. (eds.) Epistemology, Knowledge and the Impact of Interaction, Springer.
Pukanszky, L. (1960). On maximal abelian subrings of factors of type II1 . Canadian Journal of Mathematics 12 289296.
Sakai, S. (1971). C*-Algebras and W*-Algebras, Springer-Verlag.
Seiller, T. (2012). Interaction graphs: Multiplicatives. Annals of Pure and Applied Logic 163 18081837.
Seiller, T. (2013). Interaction graphs: Exponentials. CoRR, abs/1312.1094.
Seiller, T. (2014). Interaction graphs and complexity. Extended Abstract, 2014.
Seiller, S. (2015). Towards a complexity-through-realizability theory. Submitted. ArXiv: 1502.01257.
Seiller, T. (2016a). Interaction graphs: Additives, Annals of Pure and Applied Logic 167 (2) 95154.
Seiller, T. (2016b). Interaction graphs: Graphings. Annals of Pure and Applied Logic. To appear.
Sinclair, A. and Smith, R. (2008). Finite von Neumann algebras and Masas. London Mathematical Society, Lecture Note Series, volume 351, Cambridge University Press.
Streicher, T. (2013). Krivine's classical realisability from a categorical perspective. Mathematical Structures in Computer Science 23 (6) 12341256.
Takesaki, M. (2001). Theory of Operator Algebras 1, Encyclopedia of Mathematical Sciences, volume 124, Springer.
Takesaki, M. (2003a). Theory of Operator Algebras 2, Encyclopedia of Mathematical Sciences, volume 125, Springer.
Takesaki, M. (2003b). Theory of Operator Algebras 3, Encyclopedia of Mathematical Sciences, volume 127, Springer.
Tomita, M. (1967). Quasi-standard von neumann algebras. Mimeographed Notes (Kyushu University).
von Neumann, J. (1930). Zür algebra der funktionaloperatoren und theorie der normalen operatoren. Mathematische Annalen 102 370427.
von Neumann, J. (1938). On infinite direct products. Compositiones Mathematicae 6 177.
von Neumann, J. (1940). On rings of operators III. Annals of Mathematics 41 (1) 94161.
von Neumann, J. (1943). On some algebraical properties of operator rings. Annals of Mathematics 44 (4) 709715.
von Neumann, J. (1949). On rings of operators. reduction theory. Annals of Mathematics 50 (2) 401485.
White, S. (2006). Tauer masas in the hyperfinite II1 factor. Quarterly Journal of Mathematics 57 (3) 377393.
White, S. (2008). Values of the pukanszky invariant in mcduff factors. Journal of Functional Analysis 254 (3) 612631.
White, S. and Sinclair, A. (2007). A continuous path of singular masas in the hyperfinite II1 factor. Journal of the London Mathematical Society 75 (1) 243254.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 205 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2018. This data will be updated every 24 hours.