Adamczak, W., Andrew, K., Hernberg, P. and Tamon, C. (2003) A note on graphs resistant to quantum uniform mixing. ArXiv: quant-ph/0308073.
Adamczak, W., Andrew, K., Bergen, L., Ethier, D., Hernberg, P., Lin, J. and Tamon, C. (2007) Non-uniform mixing of quantum walk on cycles. Intl. J. Quantum Inf. (to appear). See also ArXiv: 0708.2096.
Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U. (2001) Quantum walks on graphs. In: Proc. 33rd Annual ACM STOC., ACM 50–59.
Aharonov, Y., Davidovich, L. and Zagury, N. (1992) Quantum random walks. Phys. Rev. A 48 (2)1687–1690.
Ahmadi, A., Belk, R., Tamon, C. and Wendler, C. (2003) On mixing in continuous-time quantum walks on some circulant graphs. Quantum Information and Computation 3 (6)611–618.
Alagić, G. and Russell, A. (2005) Decoherence in quantum walks on the hypercube. Phys. Rev. A 72 0062304.
Ambainis, A. (2003) Quantum walks and their algorithmic applications. Intl. J. Quantum Information 1 (4)507–518.
Ambainis, A. (2004) Quantum walk algorithms for element distinctness. In: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press 22–31.
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A. and Watrous, J. (2001) One-dimensional quantum walks. In: Proc. 33rd Annual ACM STOC., ACM 60–69.
Anderson, P. W. (1958) Absence of diffusion in certain random lattices. Phys. Rev. 109 (5)1492–1505.
Bach, E., Coppersmith, S., Goldschen, M. P., Joynt, R. and Watrous, J. (2004) One-dimensional quantum walks with absorbing boundaries. J. Comput. Syst. Sci. 69 (4)562–592.
Bednarska, M., Grudka, A., Kurzyński, P., Łuczak, T. and Wójcik, A. (2003) Quantum walks on cycles. Phys. Lett. A 317 (1–2)21–25.
Bennett, C. H., Bernstein, E., Brassard, G. and Vazirani, U. (1997) Strengths and weaknesses of quantum computing. SIAM J. Comput. 26 (5)151–152.
Bouwmeester, D., Marzoli, I., Karman, G. P., Schleich, W. and Woerdman, J. P. (1999) Optical Galton board. Phys. Rev. A 61 013410.
Brun, T. A., Carteret, H. A. and Ambainis, A. (2003a) Quantum random walks with decoherent coins. Phys. Rev. A 67 032304.
Brun, T. A., Carteret, H. A. and Ambainis, A. (2003b) The quantum to classical transition for random walks. Phys. Rev. Lett. 91 (13)130602.
Brun, T. A., Carteret, H. A. and Ambainis, A. (2003c) Quantum walks driven by many coins. Phys. Rev. A 67 052317.
Carlson, W., Ford, A., Harris, E., Rosen, J., Tamon, C. and Wrobel, K. (2006) Universal mixing of quantum walk on graphs. quant-ph/0608044.
Carneiro, I., Loo, M., Xu, X., Girerd, M., Kendon, V. M. and Knight, P. L. (2005) Entanglement in coined quantum walks on regular graphs. New J. Phys. 7 56.
Carteret, H. A., Ismail, M. A. and Richmond, B. (2003) Three routes to the exact asymptotics for the one-dimensional quantum walk. J. Phys. A 36 (33)8775–8795.
Childs, A. and Eisenberg, J. M. (2005) Quantum algorithms for subset finding. Quantum Information and Computation 5 593–604.
Childs, A. and Goldstone, J. (2004a) Spatial search by quantum walk. Phys. Rev. A 70 022314.
Childs, A. M. and Goldstone, J. (2004b) Spatial search and the Dirac equation. Phys. Rev. A 70 042312.
Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S. and Spielman, D. A., (2003) Exponential algorithmic speedup by a quantum walk. In: Proc. 35th Annual ACM STOC., ACM 59–68.
Dür, W., Raussendorf, R., Kendon, V. M. and Briegel, H.-J. (2002) Quantum random walks in optical lattices. Phys. Rev. A 66 052319.
Dyer, M., Frieze, A. and Kannan, R. (1991) A random polynomial-time algorithm for approximating the volume of convex bodies. J. of the ACM 38 (1)1–17.
Ermann, L., Paz, J. P. and Sraceno, M. (2006) Decoherence induced by a chaotic environment: a quantum walker with a complex coin. Phys. Rev. A 73 (1)012302.
Farhi, E. and Gutmann, S. (1998) Quantum computation and decison trees. Phys. Rev. A 58 915–928.
Fedichkin, L., Solenov, D. and Tamon, C. (2006) Mixing and decoherence in continuous time quantum walks on cycles. Quantum Information and Computation 6 (3)263–276.
Feldman, E. and Hillery, M. (2004) Scattering theory and discrete-time quantum walks. Phys. Lett. A 324 (3)277.
Feynman, R. P. (1986) Quantum mechanical computers. Found. Phys. 16 507.
Feynman, R. P., Leighton, R. B. and Sands, M. (1964) Feynman Lectures on Physics, Addison Wesley.
Flitney, A. P., Abott, D. and Johnson, N. F. (2004) Quantum random walks with history dependence. J. Phys. A 37 7581–7591.
Gottlieb, A. D. (2004) Two examples of discrete-time quantum walks taking continuous steps. Phys. Rev. E 72 (4)047102.
Gottlieb, A. D., Janson, S. and Scudo, P. F. (2005) Convergence of coined quantum walks in . Inf. Dimen. Anal. Quantum Probab. Rel. Topics 8 (1)129–140. Grimmett, G., Janson, S. and Scudo, P. (2004) Weak limits for quantum random walks. Phys. Rev. E 69 026119.
Grossing, G. and Zeilinger, A. (1988) Quantum cellular automata. Complex Systems 2 197–208.
Grover, L. K. (1996) A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM STOC., ACM 212.
Gudder, S. (1988) Quantum Probability, Academic Press.
Gurvitz, S. A. (1997) Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B 56 15215.
Gurvitz, S. A., Fedichkin, L., Mozyrsky, D. and Berman, G. P. (2003) Relaxation and Zeno effects in qubit measurements. Phys. Rev. Lett. 91 066801.
Inui, N., Konishi, Y. and Konno, N. (2004) Localization of two-dimensional quantum walks. Phys. Rev. A 69 052323.
Jerrum, M., Sinclair, A. and Vigoda, E. (2001) A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In: Proc. 33rd Annual ACM STOC., ACM 712–721.
Keating, J. P., Linden, N., Matthews, J. C. F. and Winter, A. (2006) Localization and its consequences for quantum walk algorithms and quantum communication. ArXiv: quant-ph/0606205.
Kempe, J. (2003a) Quantum random walk algorithms. Contemp. Phys. 44 (3)302–327.
Kempe, J. (2003b) Quantum random walks hit exponentially faster. In: Proc. 7th Intl. Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM '03). Springer-Verlag Lecture Notes in Computer Science 354–369.
Kempe, J. (2005) Quantum random walks hit exponentially faster. Probability Th. and Related Fields 133 (2)215–235.
Kendon, V. (2006a) Quantum walks on general graphs. Int. J. Quantum Inf. 4 (5)791–805. See also quant-ph/0306140.
Kendon, V. (2006b) A random walk approach to quantum algorithms. Phil. Trans. Roy. Soc. A 364 3407–3422.
Kendon, V. and Maloyer, O. (2006) Optimal computation with non-unitary quantum walks. ArXiv: quant-ph/0610240. To appear in Theor. Comp. Sci. A (2008) as a postproceedings volume for CiE 2006.
Kendon, V. and Tregenna, B. (2002) Decoherence in a quantum walk on a line. In: Shapiro, J. H. and Hirota, O. (eds.) Quantum Communication, Measurement and Computing (QCMC'02), Rinton Press 463.
Kendon, V. and Tregenna, B. (2003) Decoherence can be useful in quantum walks. Phys. Rev. A 67 042315.
Kendon, V. M. and Sanders, B. C. (2004) Complementarity and quantum walks. Phys. Rev. A 71 022307.
Knight, P. L., Roldán, E. and Sipe, J. E. (2003) Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68 020301(R).
Knight, P. L., Roldán, E. and Sipe, J. E. (2004) Propagating quantum walks: the origin of interference structures. J. Mod. Opt. 51 1761–1777.
Konno, N. (2002) Quantum random walks in one dimension. Quantum Information Processing 1 (5)345–354.
Konno, N. (2005a) A new type of limit theorems for the one-dimensional quantum random walk. Journal of the Mathematical Society of Japan 57 (4)1179–1195.
Konno, N. (2005b) A path integral approach for disordered quantum walks in one dimension. Fluctuation and Noise Letters 5 (4)529–537.
Konno, N., Namiki, T. and Soshi, T. (2004) Symmetricity of distribution for the one-dimentional Hadamard walk. Interdisciplinary Infor. Sci. 10 (1)11–22.
Kottos, T. and Smilansky, U. (1997) Quantum chaos on graphs. Phys. Rev. Lett. 79 4794–4797.
Košík, J., Bužek, V. and Hillery, M. (2006) Quantum walks with random phase shifts. Phys. Rev. A 74 (2)022310.
Kraus, B., Gisin, N. and Renner, R. (2005) Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95 080501.
Krovi, H. and Brun, T. A. (2006a) Hitting time for quantum walks on the hypercube. Phys. Rev. A 73 (3)032341.
Krovi, H. and Brun, T. A. (2006b) Quantum walks with infinite hitting times. Phys. Rev. A 74 (4)042334.
Lo, P., Rajaram, S., Schepens, D., Sullivan, D., Tamon, C. and Ward, J. (2006) Mixing of quantum walk on circulant bunkbeds. Quantum Information and Computation 6 (4–5)370–381.
Lomont, C. (2004) The hidden subgroup problem – review and open problems. ArXiv: quant-ph/0411037.
Lopéz, C. C. and Paz, J. P. (2003) Decoherence in quantum walks: Existence of a quantum-classical transition. Phys. Rev. A 68 052305.
Mackay, T. D., Bartlett, S. D., Stephenson, L. T. and Sanders, B. C. (2002) Quantum walks in higher dimensions. J. Phys. A: Math. Gen. 35 2745.
Magniez, F., Santha, M. and Szegedy, M. (2005) Quantum algorithms for the triangle problem. In: Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia 1109–1117.
Maloyer, O. and Kendon, V. (2007) Decoherence vs entanglement in coined quantum walks. New J. Phys. 9 87.
Meyer, D. A. (1996a) From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85 551–574.
Meyer, D. A. (1996b) On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223 (5)337–340.
Misra, B. and Sudarshan, E. C. G. (1977) The Zeno's paradox in quantum theory. J. Math. Phys. 18 756.
Montanaro, A. (2007) Quantum walks on directed graphs. Quantum Information and Computation 7 (1–2)93–102.
Moore, C. and Russell, A. (2002) Quantum walks on the hypercube. In: Rolim, J. D. P. and Vadhan, S. (eds.) Proc. 6th Intl. Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM '02), Springer 164–178.
Motwani, R. and Raghavan, P. (1995) Randomized Algorithms, Cambridge University Press.
Nayak, A. and Vishwanath, A. (2000) Quantum walk on the line. quant-ph/0010117.
Pakoński, P., Tanner, G. and Życzkowski, K. (2003) Families of line-graphs and their quantization. J. Stat. Phys 111 (5/6)1331–1352.
Renner, R., Gisin, N. and Kraus, B. (2005) An information-theoretic security proof for QKD protocols. Phys. Rev. A 72 012332.
Ribeiro, P., Milman, P. and Mosseri, R. (2004) Aperiodic quantum random walks. Phys. Rev. Lett. 93 (19)190503.
Richter, P. (2007a) Almost uniform sampling in quantum walks. New J. Phys. 9 72. See also ArXiv: quant-ph/0606202.
Richter, P. (2007b) Quantum speedup of classical mixing processes. Phys. Rev. A 76 042306. See also ArXiv: quant-ph/0609204.
Romanelli, A., Sicardi-Schifino, A. C., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2004) Quantum random walk on the line as a Markovian process. Physica A 338 395–405.
Romanelli, A., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2003) Decoherence in the quantum walk on the line. Physica A 347 137–152.
Ryan, C. A., Laforest, M., Boileau, J. C. and Laflamme, R. (2005) Experimental implementation of discrete time quantum random walk on an NMR quantum information processor. Phys. Rev. A 72 062317.
Sachdev, S. (1999) Quantum Phase Transitions, Cambridge University Press.
Sanders, B. C., Bartlett, S. D., Tregenna, B. and Knight, P. L. (2003) Quantum quincunx in cavity QED. Phys. Rev. A 67 042305.
Schöning, U. (1999) A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: 40th Annual Symposium on FOCS, IEEE Computer Society Press 17–19.
Severini, S. (2003) On the digraph of a unitary matrix. SIAM J. Matrix Anal. Appl. 25 (1)295–300.
Severini, S. (2006) Graphs of a unitary matrix. math.CO/0303084.
Shapira, D., Biham, O., Bracken, A. J. and Hackett, M. (2003) One dimensional quantum walk with unitary noise. Phys. Rev. A 68 (6)062315.
Shenvi, N., Kempe, J. and Birgitta Whaley, K. (2003) A quantum random walk search algorithm. Phys. Rev. A 67 052307.
Shor, P. W. (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci Statist. Comput. 26 1484.
Solenov, D. and Fedichkin, L. (2006a) Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73 012313.
Solenov, D. and Fedichkin, L. (2006b) Non-unitary quantum walks on hyper-cycles. Phys. Rev. A 73 012308.
Strauch, F. W. (2006a) Connecting the discrete and continuous-time quantum walks. Phys. Rev. A 74 (3)030301.
Strauch, F. W. (2006b) Relativistic quantum walks. Phys. Rev. A 73 (6)054302.
Szegedy, M. (2004a) Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press 32–41.
Szegedy, M. (2004b) Spectra of quantized walks and a rule. ArXiv: quant-ph/0401053. Tadej, W. and Życzkowski, K. (2006) A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13 133–177.
Travaglione, B. C. and Milburn, G. J. (2002) Implementing the quantum random walk. Phys. Rev. A 65 032310.
Tregenna, B., Flanagan, W., Maile, R. and Kendon, V. (2003) Controlling discrete quantum walks: coins and initial states. New J. Phys. 5 83.
Watrous, J. (2001) Quantum simulations of classical random walks and undirected graph connectivity. J. Comp. System Sciences 62 (2)376–391.
Watrous, J. (2002) Private communication.
Weiss, G. H. (1994) Aspects and Applications of the Random Walk, North-Holland.
Yamasaki, T., Kobayashi, H. and Imai, H. (2002) An analysis of absorbing times of quantum walks. In: Calude, C., Dinneen, M. J. and Peper, F. (eds.) Proceedings: Unconventional Models of Computation, Third Intl. Conf., UMC 2002. Springer-Verlag Lecture Notes in Computer Science 2509 315–330.