Skip to main content
×
Home
    • Aa
    • Aa

Decoherence in quantum walks – a review

  • VIV KENDON (a1)
Abstract

The development of quantum walks in the context of quantum computation, as generalisations of random walk techniques, has led rapidly to several new quantum algorithms. These all follow a unitary quantum evolution, apart from the final measurement. Since logical qubits in a quantum computer must be protected from decoherence by error correction, there is no need to consider decoherence at the level of algorithms. Nonetheless, enlarging the range of quantum dynamics to include non-unitary evolution provides a wider range of possibilities for tuning the properties of quantum walks. For example, small amounts of decoherence in a quantum walk on the line can produce more uniform spreading (a top-hat distribution), without losing the quantum speed up. This paper reviews the work on decoherence, and more generally on non-unitary evolution, in quantum walks and suggests what future questions might prove interesting to pursue in this area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Decoherence in quantum walks – a review
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Decoherence in quantum walks – a review
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Decoherence in quantum walks – a review
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y. Aharonov , L. Davidovich and N. Zagury (1992) Quantum random walks. Phys. Rev. A 48 (2) 16871690.

G. Alagić and A. Russell (2005) Decoherence in quantum walks on the hypercube. Phys. Rev. A 72 0062304.

A. Ambainis (2003) Quantum walks and their algorithmic applications. Intl. J. Quantum Information 1 (4) 507518.

P. W. Anderson (1958) Absence of diffusion in certain random lattices. Phys. Rev. 109 (5) 14921505.

E. Bach , S. Coppersmith , M. P. Goldschen , R. Joynt and J. Watrous (2004) One-dimensional quantum walks with absorbing boundaries. J. Comput. Syst. Sci. 69 (4) 562592.

M. Bednarska , A. Grudka , P. Kurzyński , T. Łuczak and A. Wójcik (2003) Quantum walks on cycles. Phys. Lett. A 317 (1–2) 2125.

C. H. Bennett , E. Bernstein , G. Brassard and U. Vazirani (1997) Strengths and weaknesses of quantum computing. SIAM J. Comput. 26 (5) 151152.

D. Bouwmeester , I. Marzoli , G. P. Karman , W. Schleich and J. P. Woerdman (1999) Optical Galton board. Phys. Rev. A 61 013410.

T. A. Brun , H. A. Carteret and A. Ambainis (2003a) Quantum random walks with decoherent coins. Phys. Rev. A 67 032304.

T. A. Brun , H. A. Carteret and A. Ambainis (2003b) The quantum to classical transition for random walks. Phys. Rev. Lett. 91 (13) 130602.

T. A. Brun , H. A. Carteret and A. Ambainis (2003c) Quantum walks driven by many coins. Phys. Rev. A 67 052317.

I. Carneiro , M. Loo , X. Xu , M. Girerd , V. M. Kendon and P. L. Knight (2005) Entanglement in coined quantum walks on regular graphs. New J. Phys. 7 56.

H. A. Carteret , M. A. Ismail and B. Richmond (2003) Three routes to the exact asymptotics for the one-dimensional quantum walk. J. Phys. A 36 (33) 87758795.

A. Childs and J. Goldstone (2004a) Spatial search by quantum walk. Phys. Rev. A 70 022314.

A. M. Childs and J. Goldstone (2004b) Spatial search and the Dirac equation. Phys. Rev. A 70 042312.

W. Dür , R. Raussendorf , V. M. Kendon and H.-J. Briegel (2002) Quantum random walks in optical lattices. Phys. Rev. A 66 052319.

M. Dyer , A. Frieze and R. Kannan (1991) A random polynomial-time algorithm for approximating the volume of convex bodies. J. of the ACM 38 (1) 117.

L. Ermann , J. P. Paz and M. Sraceno (2006) Decoherence induced by a chaotic environment: a quantum walker with a complex coin. Phys. Rev. A 73 (1) 012302.

E. Farhi and S. Gutmann (1998) Quantum computation and decison trees. Phys. Rev. A 58 915928.

E. Feldman and M. Hillery (2004) Scattering theory and discrete-time quantum walks. Phys. Lett. A 324 (3) 277.

R. P. Feynman (1986) Quantum mechanical computers. Found. Phys. 16 507.

A. P. Flitney , D. Abott and N. F. Johnson (2004) Quantum random walks with history dependence. J. Phys. A 37 75817591.

A. D. Gottlieb (2004) Two examples of discrete-time quantum walks taking continuous steps. Phys. Rev. E 72 (4) 047102.

A. D. Gottlieb , S. Janson and P. F. Scudo (2005) Convergence of coined quantum walks in $\mathbb{R}^d$. Inf. Dimen. Anal. Quantum Probab. Rel. Topics 8 (1) 129140.

G. Grimmett , S. Janson and P. Scudo (2004) Weak limits for quantum random walks. Phys. Rev. E 69 026119.

S. A. Gurvitz (1997) Measurements with a noninvasive detector and dephasing mechanism. Phys. Rev. B 56 15215.

S. A. Gurvitz , L. Fedichkin , D. Mozyrsky and G. P. Berman (2003) Relaxation and Zeno effects in qubit measurements. Phys. Rev. Lett. 91 066801.

N. Inui , Y. Konishi and N. Konno (2004) Localization of two-dimensional quantum walks. Phys. Rev. A 69 052323.

J. Kempe (2003a) Quantum random walk algorithms. Contemp. Phys. 44 (3) 302327.

J. Kempe (2005) Quantum random walks hit exponentially faster. Probability Th. and Related Fields 133 (2) 215235.

V. Kendon (2006a) Quantum walks on general graphs. Int. J. Quantum Inf. 4 (5) 791805. See also quant-ph/0306140.

V. Kendon (2006b) A random walk approach to quantum algorithms. Phil. Trans. Roy. Soc. A 364 34073422.

V. Kendon and B. Tregenna (2003) Decoherence can be useful in quantum walks. Phys. Rev. A 67 042315.

V. M. Kendon and B. C. Sanders (2004) Complementarity and quantum walks. Phys. Rev. A 71 022307.

P. L. Knight , E. Roldán and J. E. Sipe (2003) Quantum walk on the line as an interference phenomenon. Phys. Rev. A 68 020301(R).

P. L. Knight , E. Roldán and J. E. Sipe (2004) Propagating quantum walks: the origin of interference structures. J. Mod. Opt. 51 17611777.

N. Konno (2002) Quantum random walks in one dimension. Quantum Information Processing 1 (5) 345354.

N. Konno (2005a) A new type of limit theorems for the one-dimensional quantum random walk. Journal of the Mathematical Society of Japan 57 (4) 11791195.

N. Konno (2005b) A path integral approach for disordered quantum walks in one dimension. Fluctuation and Noise Letters 5 (4) 529537.

N. Konno , T. Namiki and T. Soshi (2004) Symmetricity of distribution for the one-dimentional Hadamard walk. Interdisciplinary Infor. Sci. 10 (1) 1122.

T. Kottos and U. Smilansky (1997) Quantum chaos on graphs. Phys. Rev. Lett. 79 47944797.

J. Košík , V. Bužek and M. Hillery (2006) Quantum walks with random phase shifts. Phys. Rev. A 74 (2) 022310.

B. Kraus , N. Gisin and R. Renner (2005) Lower and upper bounds on the secret key rate for QKD protocols using one-way classical communication. Phys. Rev. Lett. 95 080501.

H. Krovi and T. A. Brun (2006a) Hitting time for quantum walks on the hypercube. Phys. Rev. A 73 (3) 032341.

H. Krovi and T. A. Brun (2006b) Quantum walks with infinite hitting times. Phys. Rev. A 74 (4) 042334.

T. D. Mackay , S. D. Bartlett , L. T. Stephenson and B. C. Sanders (2002) Quantum walks in higher dimensions. J. Phys. A: Math. Gen. 35 2745.

O. Maloyer and V. Kendon (2007) Decoherence vs entanglement in coined quantum walks. New J. Phys. 9 87.

D. A. Meyer (1996a) From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85 551574.

D. A. Meyer (1996b) On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223 (5) 337340.

B. Misra and E. C. G. Sudarshan (1977) The Zeno's paradox in quantum theory. J. Math. Phys. 18 756.

C. Moore and A. Russell (2002) Quantum walks on the hypercube. In: J. D. P. Rolim and S. Vadhan (eds.) Proc. 6th Intl. Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM '02), Springer164178.

R. Motwani and P. Raghavan (1995) Randomized Algorithms, Cambridge University Press.

P. Pakoński , G. Tanner and K. Życzkowski (2003) Families of line-graphs and their quantization. J. Stat. Phys 111 (5/6) 13311352.

R. Renner , N. Gisin and B. Kraus (2005) An information-theoretic security proof for QKD protocols. Phys. Rev. A 72 012332.

P. Ribeiro , P. Milman and R. Mosseri (2004) Aperiodic quantum random walks. Phys. Rev. Lett. 93 (19) 190503.

P. Richter (2007a) Almost uniform sampling in quantum walks. New J. Phys. 9 72. See also ArXiv: quant-ph/0606202.

P. Richter (2007b) Quantum speedup of classical mixing processes. Phys. Rev. A 76 042306. See also ArXiv: quant-ph/0609204.

A. Romanelli , A. C. Sicardi-Schifino , R. Siri , G. Abal , A. Auyuanet and R. Donangelo (2004) Quantum random walk on the line as a Markovian process. Physica A 338 395405.

A. Romanelli , R. Siri , G. Abal , A. Auyuanet and R. Donangelo (2003) Decoherence in the quantum walk on the line. Physica A 347 137152.

C. A. Ryan , M. Laforest , J. C. Boileau and R. Laflamme (2005) Experimental implementation of discrete time quantum random walk on an NMR quantum information processor. Phys. Rev. A 72 062317.

B. C. Sanders , S. D. Bartlett , B. Tregenna and P. L. Knight (2003) Quantum quincunx in cavity QED. Phys. Rev. A 67 042305.

S. Severini (2003) On the digraph of a unitary matrix. SIAM J. Matrix Anal. Appl. 25 (1) 295300.

D. Shapira , O. Biham , A. J. Bracken and M. Hackett (2003) One dimensional quantum walk with unitary noise. Phys. Rev. A 68 (6) 062315.

N. Shenvi , J. Kempe and K. Birgitta Whaley (2003) A quantum random walk search algorithm. Phys. Rev. A 67 052307.

P. W. Shor (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci Statist. Comput. 26 1484.

D. Solenov and L. Fedichkin (2006a) Continuous-time quantum walks on a cycle graph. Phys. Rev. A 73 012313.

D. Solenov and L. Fedichkin (2006b) Non-unitary quantum walks on hyper-cycles. Phys. Rev. A 73 012308.

F. W. Strauch (2006a) Connecting the discrete and continuous-time quantum walks. Phys. Rev. A 74 (3) 030301.

F. W. Strauch (2006b) Relativistic quantum walks. Phys. Rev. A 73 (6) 054302.

M. Szegedy (2004a) Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press3241.

W. Tadej and K. Życzkowski (2006) A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13 133177.

B. C. Travaglione and G. J. Milburn (2002) Implementing the quantum random walk. Phys. Rev. A 65 032310.

B. Tregenna , W. Flanagan , R. Maile and V. Kendon (2003) Controlling discrete quantum walks: coins and initial states. New J. Phys. 5 83.

J. Watrous (2001) Quantum simulations of classical random walks and undirected graph connectivity. J. Comp. System Sciences 62 (2) 376391.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 174 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.