Skip to main content

The discrete versus continuous controversy in physics


This paper presents a sample of the deep and multiple interplay between discrete and continuous behaviours and the corresponding modellings in physics. The aim of this overview is to show that discrete and continuous features coexist in any natural phenomenon, depending on the scales of observation. Accordingly, different models, either discrete or continuous in time, space, phase space or conjugate space can be considered. Some caveats about their limits of validity and their interrelationships (discretisation and continuous limits) are pointed out. Difficulties and gaps arising from the singular nature of continuous limits and from the information loss accompanying discretisation are discussed.

Hide All
Arnold, L. (1980) On the consistency of the mathematical models of chemical reactions. In: Haken, H. (ed.) Dynamics of synergetic systems, Springer-Verlag 107118.
Auger, P. and Roussarie, R. (1994) Complex ecological models with simple dynamics: From individuals to populations. Acta Biotheoretica 42 111136.
Badii, R. and Politi, A. (1999) Complexity. Hierarchical structures and scaling in physics, Cambridge University Press.
Bailly, F. and Longo, G. (2004) Causalités et symétries dans les sciences de la nature. Le continu et le discret mathématiques. In: Joinet, J. B. (ed.) Logique et interaction: pour une géométrie de la cognition, Presses Universitaires de la Sorbonne, Paris.
Baker, G. L. and Gollub, J. B. (1996) Chaotic dynamics: An introduction, 2nd edition, Cambridge University Press.
Balian, R. (2004) Entropy, a protean concept. In: Dalibard, J., Duplantier, B. and Rivasseau, V. (eds.) Poincaré Seminar 2003, Birkhaüser.
Bensoussan, A., Lions, J. L. and Papanicolaou, G. (1978) Asymptotic analysis for periodic structures, North Holland.
Berry, M. (2001) Chaos and the semiclassical limit of quantum mechanics (is the moon there when somebody looks?). In: Russell, R. J., Clayton, P., Wegter-McNelly, K. and Polkinghorne, J. (eds.) Quantum mechanics: Scientific perspectives on Divine Action, Vatican Observatory – CTNS Publications 4154.
Boffetta, G., Cencini, M., Falcioni, M. and Vulpiani, A. (2002) Predictability: a way to characterize complexity. Phys. Rep. 356 367474.
Canny, J. F. (1986) A computational approch to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 679714.
Cantor, G. (1883) Über unendliche, lineare Punktlannigfaltigkeiten. Mathematische Annalen 21 545591.
Cardy, J. (2004) Field theory and nonequilibrium statistical mechanics. Lecture notes available online at
Castiglione, P., Falcioni, M., Lesne, A. and Vulpiani, A. (2007) Chaos and coarse-grainings in non equilibrium statistical mechanics, Springer-Verlag (to appear).
Chernov, N. and Lebowitz, J. L. (1997) Stationary nonequilibrium states in boundary driven Hamiltonian systems: shear flow. J. of Stat. Phys. 86 953990.
Chopard, B. and Droz, M. (1998) Cellular automata modeling of physical systems, Cambridge University Press.
Cross, M. C. and Hohenberg, P. C. (1993) Pattern formation outside of equilibrium. Revs. Mod. Phys. 65 8511112.
Dettmann, C. P. and Morriss, G. P. (1996) Proof of Lyapunov exponent pairing for systems at constant kinetic energy. Phys. Rev. E 53 R5545R5548.
Diener, F. and Diener, M. (eds.) (1995) Nonstandard analysis in practice, Springer-Verlag.
Dorfman, J. R. (1999) An introduction to chaos in nonequilibrium statistical mechanics, Cambridge University Press.
Droz, M. and Pekalski, A. (2004) Population dynamics with or without evolution: a physicist's approach. Physica A 336 8492.
Eckmann, J. P. (1981) Roads to turbulence in dissipative dynamical systems. Revs. Mod. Phys. 53 643654.
Eckmann, J. P. and Ruelle, D. (1985) Ergodic theory of chaos and strange attractors. Revs. Mod. Phys. 57 617656.
Ernst, M. H. (2000) Kinetic theory of granular fluids: hard and soft inelastic spheres. In: Karkheck, J. (ed.) Proc. NATO ASI on dynamics: models and kinetic methods for non-equilibrium many body systems, Kluwer 239266.
Falcioni, M., Vulpiani, A., Mantica, G. and Pigolotti, S. (2003) Coarse-grained probabilistic automata mimicking chaotic systems. Phys. Rev. Lett. 91 044101.
Frisch, U. (1995) Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press.
Gardiner, C. W. (1983) Handbook of stochastic methods, Springer-Verlag.
Gaspard, P. (2004a) Maps. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, Taylor and Francis, London.
Gaspard, P. (2004b) Quantum theory. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, Taylor and Francis, London.
Gaspard, P. and Dorfman, J. R. (1995) Chaotic scattering theory, thermodynamic formalism and transport coefficients. Phys. Rev. E 52 35253552.
Gaspard, P. and Wang, X. J. (1993) Noise, chaos, and (τ, ε)-entropy per unit time. Phys. Rep. 235 321373.
Ghil, M. and Mullhaupt, A. (l985) Boolean delay equations: periodic and aperiodic solutions. J. Stat. Phys. 41 l25l74.
Givon, D., Kupferman, R. and Stuart, A. (2004) Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 R55R127.
Gonze, D., Halloy, J and Gaspard, P. (2002) Biochemical clocks and molecular noise: Theoretical study of robustness factors. J. Chem. Phys. 116 1099711010.
Gouyet, J. J. (1996) Physics and fractal structures, Springer-Verlag.
Gruber, C., Pache, S. and Lesne, A. (2004) The Second Law of thermodynamics and the piston problem. J. Stat. Phys 117 739772.
Guckenheimer, J. and Holmes, P. (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag.
Gutzwiller, M. C. (1990) Chaos in classical and quantum mechanics, Springer-Verlag.
Hänggi, P., Talkner, P. and Borkovec, M. (1990) Reaction-rate theory: fifty years after Kramers. Revs. Mod. Phys. 62 251341.
Hausdorff, F. (1919) Dimension und ausseres Mass. Math. Ann. 29 157179.
Hilbert, D. (1891) Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen 38 459460.
Jaynes, E. T. (1989) Papers on probability, statistics and statistical physics, Kluwer.
Kirkpatrick, T. R. and Ernst, M. H. (1991) Kinetic theory for lattice gas cellular automata. Phys. Rev. A 44 80518061.
Kolmogorov, A. N. and Tikhomirov, V. M. (1959) ε-entropy and ε-capacity of sets in functional space. Russian Mathematical Surveys 2 277–364. (Translated in Translations Am. Math. Soc. (1961) 17 277–364; also available in Shiryayev, A. N. (ed.) (1993) in Selected works of A. N. Kolmogorov, Vol. III, Kluwer 86–170.)
Krivine, H. and Lesne, A. (2003) Mathematical puzzle in the analysis of a low-pitched filter. American Journal of Physics 71 3133.
Laguës, M. and Lesne, A. (2003) Invariances d'échelle, Series ‘Échelles’, Belin, Paris.
Landau, L. D. and Lifschitz, E. M. (1984a) Theory of elasticity, Pergamon Press, Oxford.
Landau, L. D. and Lifschitz, E. M. (1984b) Hydrodynamics, Pergamon Press, Oxford.
Landau, L. D. and Lifschitz, E. M. (1984c) Electromagnetism of continuous media, Pergamon Press, Oxford.
Lebowitz, J. L. (1993) Boltzmann's entropy and time's arrow. Physics Today 46 3238.
Lesne, A. (1998) Renormalization methods, Wiley.
Lind, D and Marcus, B. (1995) An introduction to symbolic dynamics and coding, Cambridge University Press.
Longo, G. (2002) Laplace, Turing and the ‘imitation game’ impossible geometry: randomness, determinism and program's in Turing's test. In: Conference on cognition, meaning and complexity, Univ. Roma II.
Ma, S. K. (1976) Modern theory of critical phenomena, Benjamin.
MacKernan, D. and Nicolis, G. (1994) Generalized Markov coarse-graining and spectral decompositions of chaotic piecewise linear maps. Phys. Rev. E 50 988999.
Mandelbrot, B. (1977a) Fractals: form, chance and dimension, Freeman.
Mandelbrot, B. (1977b) The fractal geometry of Nature, Freeman.
Mielke, A. and Zelik, S. (2004) Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in Rn (preprint available at
Murray, J. D. (2002) Mathematical biology, 3rd edition, Springer-Verlag.
Nicholson, C. (2001) Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64 815884.
Nicolis, G. and Gaspard, P. (1994) Toward a probabilistic approach to complex systems. Chaos, Solitons and Fractals 4 4157.
Nyquist, H. (1928) Certain topics in telegraph transmission theory. AIEE Trans. 47 617644.
Parry, W. (1981) Topics in ergodic theory, Cambridge University Press.
Poincaré, H. (1892) Les méthodes nouvelles de la mécanique céleste, Gauthiers-Villars, Paris.
Pollicott, M. and Yuri, M. (1998) Dynamical systems and ergodic theory, Cambridge University Press.
Rezakhanlou, F. (1996) Kinetic limits for a class of interacting particle systems. Probab. Theory Related Fields 104 97146.
Ruelle, D. (1986) Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56 405407.
Ruelle, D. and Takens, F. (1971) On the nature of turbulence. Commun. Maths. Phys. 20 167192; Commun. Maths. Phys. 23343344.
Schnakenberg, J. (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Revs. Mod. Phys. 48 571585.
Shannon, C. E. (1948) A mathematical theory of communication The Bell System Technical Journal 27 479–423 and 623656.
Shannon, C. (1949) Communication in the presence of noise. Proceedings of the IRE 37 10–21. (Reprinted in Proceedings of the IEEE 86 447–457 (1998).)
Stauffer, D. and Aharony, A. (1992) Introduction to percolation theory, Taylor and Francis, London.
Taniguchi, T. and Morriss, G. P. (2002) Stepwise structure of Lyapunov spectra for many-particle systems using a random matrix dynamics Phys. Rev. E 65 056202.
Thomas, R. and Kaufman, M. (2001) Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other non-trivial behaviour. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11 170195.
Turing, A. M. (1950) Computing machinery and intelligence. Mind 59 433560.
Turing, A. M. (1952) The chemical basis of morphogenesis. Phil. Trans. R. Soc. London B 237 37–72. (Reprinted in Saunders, P. T. (ed.) (1992) Collected works of A. M. Turing, vol. 2, North Holland.)
Van Beijeren, H. and Dorfman, J. R. (1995) Lyapunov exponents and Kolmogorov–Sinai entropy for the Lorentz gas at low densities. Phys. Rev. Lett. 74 13191322.
Vicsek, T. (ed.) (2001) Fluctuations and scaling in biology, Oxford University Press.
Werhl, A. (1978) General properties of entropy. Rev. Mod. Phys. 50 221260.
Zaks, M. and Pikovsky, A. (2003) Dynamics at the border of chaos and order. In: Livi, R. and Vulpiani, A. (eds.) The Kolmogorov legacy in physics 61–82.
Zurek, W. H. and Paz, J. P. (1995) Quantum chaos: a decoherent definition. Physica D 83 300308.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 246 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.