Skip to main content
    • Aa
    • Aa

The discrete versus continuous controversy in physics


This paper presents a sample of the deep and multiple interplay between discrete and continuous behaviours and the corresponding modellings in physics. The aim of this overview is to show that discrete and continuous features coexist in any natural phenomenon, depending on the scales of observation. Accordingly, different models, either discrete or continuous in time, space, phase space or conjugate space can be considered. Some caveats about their limits of validity and their interrelationships (discretisation and continuous limits) are pointed out. Difficulties and gaps arising from the singular nature of continuous limits and from the information loss accompanying discretisation are discussed.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. R. Kirkpatrick and M. H. Ernst (1991) Kinetic theory for lattice gas cellular automata. Phys. Rev. A 44 80518061.

J. Schnakenberg (1976) Network theory of microscopic and macroscopic behavior of master equation systems. Revs. Mod. Phys. 48 571585.

G. Nicolis and P. Gaspard (1994) Toward a probabilistic approach to complex systems. Chaos, Solitons and Fractals 4 4157.

C. P. Dettmann and G. P. Morriss (1996) Proof of Lyapunov exponent pairing for systems at constant kinetic energy. Phys. Rev. E 53 R5545R5548.

G. Boffetta , M. Cencini , M. Falcioni and A. Vulpiani (2002) Predictability: a way to characterize complexity. Phys. Rep. 356 367474.

C. Nicholson (2001) Diffusion and related transport mechanisms in brain tissue. Rep. Prog. Phys. 64 815884.

J. L. Lebowitz (1993) Boltzmann's entropy and time's arrow. Physics Today 46 3238.

D. Gonze , J Halloy and P. Gaspard (2002) Biochemical clocks and molecular noise: Theoretical study of robustness factors. J. Chem. Phys. 116 1099711010.

F. Diener and M. Diener (eds.) (1995) Nonstandard analysis in practice, Springer-Verlag.

D Lind and B. Marcus (1995) An introduction to symbolic dynamics and coding, Cambridge University Press.

H. Van Beijeren and J. R. Dorfman (1995) Lyapunov exponents and Kolmogorov–Sinai entropy for the Lorentz gas at low densities. Phys. Rev. Lett. 74 13191322.

U. Frisch (1995) Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press.

P. Auger and R. Roussarie (1994) Complex ecological models with simple dynamics: From individuals to populations. Acta Biotheoretica 42 111136.

W. H. Zurek and J. P. Paz (1995) Quantum chaos: a decoherent definition. Physica D 83 300308.

J. R. Dorfman (1999) An introduction to chaos in nonequilibrium statistical mechanics, Cambridge University Press.

C. W. Gardiner (1983) Handbook of stochastic methods, Springer-Verlag.

C. E. Shannon (1948) A mathematical theory of communication The Bell System Technical Journal 27 479–423 and 623656.

G. L. Baker and J. B. Gollub (1996) Chaotic dynamics: An introduction, 2nd edition, Cambridge University Press.

G. Cantor (1883) Über unendliche, lineare Punktlannigfaltigkeiten. Mathematische Annalen 21 545591.

M. C. Cross and P. C. Hohenberg (1993) Pattern formation outside of equilibrium. Revs. Mod. Phys. 65 8511112.

M. Falcioni , A. Vulpiani , G. Mantica and S. Pigolotti (2003) Coarse-grained probabilistic automata mimicking chaotic systems. Phys. Rev. Lett. 91 044101.

D. Givon , R. Kupferman and A. Stuart (2004) Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 R55R127.

J. Guckenheimer and P. Holmes (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag.

D. Hilbert (1891) Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen 38 459460.

S. K. Ma (1976) Modern theory of critical phenomena, Benjamin.

M. Pollicott and M. Yuri (1998) Dynamical systems and ergodic theory, Cambridge University Press.

N. Chernov and J. L. Lebowitz (1997) Stationary nonequilibrium states in boundary driven Hamiltonian systems: shear flow. J. of Stat. Phys. 86 953990.

B. Chopard and M. Droz (1998) Cellular automata modeling of physical systems, Cambridge University Press.

M. Droz and A. Pekalski (2004) Population dynamics with or without evolution: a physicist's approach. Physica A 336 8492.

J. P. Eckmann (1981) Roads to turbulence in dissipative dynamical systems. Revs. Mod. Phys. 53 643654.

J. P. Eckmann and D. Ruelle (1985) Ergodic theory of chaos and strange attractors. Revs. Mod. Phys. 57 617656.

P. Gaspard and J. R. Dorfman (1995) Chaotic scattering theory, thermodynamic formalism and transport coefficients. Phys. Rev. E 52 35253552.

P. Gaspard and X. J. Wang (1993) Noise, chaos, and (τ, ε)-entropy per unit time. Phys. Rep. 235 321373.

M. Ghil and A. Mullhaupt (l985) Boolean delay equations: periodic and aperiodic solutions. J. Stat. Phys. 41 l25l74.

C. Gruber , S. Pache and A. Lesne (2004) The Second Law of thermodynamics and the piston problem. J. Stat. Phys 117 739772.

M. C. Gutzwiller (1990) Chaos in classical and quantum mechanics, Springer-Verlag.

P. Hänggi , P. Talkner and M. Borkovec (1990) Reaction-rate theory: fifty years after Kramers. Revs. Mod. Phys. 62 251341.

H. Krivine and A. Lesne (2003) Mathematical puzzle in the analysis of a low-pitched filter. American Journal of Physics 71 3133.

L. D. Landau and E. M. Lifschitz (1984c) Electromagnetism of continuous media, Pergamon Press, Oxford.

D. MacKernan and G. Nicolis (1994) Generalized Markov coarse-graining and spectral decompositions of chaotic piecewise linear maps. Phys. Rev. E 50 988999.

W. Parry (1981) Topics in ergodic theory, Cambridge University Press.

F. Rezakhanlou (1996) Kinetic limits for a class of interacting particle systems. Probab. Theory Related Fields 104 97146.

D. Ruelle (1986) Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56 405407.

D. Ruelle and F. Takens (1971) On the nature of turbulence. Commun. Maths. Phys. 20 167192; Commun. Maths. Phys.23343344.

T. Taniguchi and G. P. Morriss (2002) Stepwise structure of Lyapunov spectra for many-particle systems using a random matrix dynamics Phys. Rev. E 65 056202.

R. Thomas and M. Kaufman (2001) Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other non-trivial behaviour. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11 170195.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 169 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.