Skip to main content
×
×
Home

Discrete-time and continuous-time modelling: some bridges and gaps

  • HUBERT KRIVINE (a1), ANNICK LESNE (a2) (a3) and JACQUES TREINER (a1)
Extract

The relationship between continuous-time dynamics and the corresponding discrete schemes, and its generally limited validity, is an important and widely acknowledged field within numerical analysis. In this paper, we propose another, more physical, viewpoint on this topic in order to understand the possible failure of discretisation procedures and the way to fix it. Three basic examples, the logistic equation, the Lotka–Volterra predator–prey model and Newton's law for planetary motion, are worked out. They illustrate the deep difference between continuous-time evolutions and discrete-time mappings, hence shedding some light on the more general duality between continuous descriptions of natural phenomena and discrete numerical computations.

Copyright
References
Hide All
Borrelli, R. L. and Coleman, C. S. (1998) Differential equations: A modeling perspective, Wiley.
Coullet, P., Monticelli, M. and Treiner, J. (2004) L'algorithme de Newton-Hooke. Bulletin de l'Union des Physiciens 861 193206.
Coullet, P. and Tresser, C. (1978) Itération d'endomorphismes et groupe de renormalisation. CR Acad. Sc. Paris 287A 577580.
Devaney, R. L. (1989) An introduction to chaotic dynamical systems, Addison-Wesley.
Evans, D. J. and Morriss, G. P. (1990) Statistical mechanics of nonequilibrium liquids, Chapter 10, Academic Press.
Feigenbaum, M. (1978) Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 2552.
Hairer, E., Lubich, C. and Wanner, G. (2002) Geometric numerical integration, Springer.
Hubbard, J. and West, B. (1991) Differential equations, a dynamical systems approach, Springer.
Korsch, H. J. and Jodl, H. J. (1998) Chaos: a program collection for the PC, Springer.
Iooss, G. and Joseph, D. D. (1981) Elementary stability and bifurcation theory, Springer.
Kolmogorov, A. N. (1936) Sulla teoria di Volterra della lotta per l'esistenza. Giornale Istituto Ital. Attuari 7 7480.
Lotka, A. J. (1920) Analytical note on certain rhythmic relations in organic systems. Proc. Natl. Acad. Sci. USA 6 410415.
May, R. M. (1973) Stability and complexity in model ecosystems, Princeton University Press.
May, R. M. (1976) Simple mathematical models with very complicated dynamics. Nature 261 459467.
Mendes, E. and Letellier, C. (2004) Displacement in the parameter space versus spurious solution of discretization with large time step. J. Phys. A 37 12031218.
Mickens, R. E. (2002) Nonstandard finite difference schemes of differential equations. Journal of Difference Equations and Applications 2 823847.
Murray, J. D. (2002) Mathematical biology, 3rd edition, Springer.
Nyquist, H. (1928) Certain topics in telegraph transmission theory. AIEE Trans. 47 617644.
Peitgen, H. O., Jürgens, H. and Saupe, D. (1992) Chaos and fractals, Springer.
Sanz-Serna, J. M. (1992) Symplectic integrators for Hamiltonian problems: an overview. Acta Numerica 1 243286.
Schuster, H. G. (1984) Deterministic chaos, Physik-Verlag, Wienheim.
Shannon, C. (1949) Communication in the presence of noise. Proceedings of the IRE 37 10–21. (Reprinted in Proceedings of the IEEE 86 447–457 (1998).)
Tabor, M. (1989) Chaos and integrability in non linear dynamics. An introduction, Wiley.
Verhulst, P. F. (1838) Notice sur la loi que la population suit dans son accroissement. Corresp. Math. et Phys. 10 1321.
Volterra, V. (1931) Leçons sur la théorie mathématique de la lutte pour la vie, Gauthiers-Villars, Paris.
Yamaguti, M. and Matano, H. (1979) Euler's finite difference scheme and chaos. Proc. Japan Acad. Series A 55 7880.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed