Skip to main content
×
Home
    • Aa
    • Aa

Proving the validity of equations in GSOS languages using rule-matching bisimilarity

  • LUCA ACETO (a1), MATTEO CIMINI (a1) and ANNA INGOLFSDOTTIR (a1)
Abstract

This paper presents a bisimulation-based method for establishing the soundness of equations between terms constructed using operations whose semantics are specified by rules in the GSOS format of Bloom, Istrail and Meyer. The method is inspired by de Simone's FH-bisimilarity and uses transition rules as schematic transitions in a bisimulation-like relation between open terms. The soundness of the method is proved and examples showing its applicability are provided. The proposed bisimulation-based proof method is incomplete, but we do offer some completeness results for restricted classes of GSOS specifications. An extension of the proof method to the setting of GSOS languages with predicates is also offered.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L. Aceto , A. Birgisson , A. Ingolfsdottir , M. Mousavi and M. Reniers (2010) Rule formats for determinism and idempotence. In: F. Arbab and M. Sirjani (eds.) Fundamentals of Software Engineering, Third IPM International Conference, FSEN 2009, Revised Selected Papers. Springer-Verlag Lecture Notes in Computer Science 5961 146161.

L. Aceto , B. Bloom and F. Vaandrager (1994) Turning SOS rules into equations. Information and Computation 111 (1) 152.

L. Aceto , M. Cimini and A. Ingolfsdottir (2010a) A bisimulation-based method for proving the validity of equations in GSOS languages. In: B. Klin and P. Sobocinski (eds.) Proceedings Sixth Workshop on Structural Operational Semantics (SOS 2009). Electronic Proceedings in Theoretical Computer Science 18 116.

L. Aceto , W. Fokkink , A. Ingolfsdottir and B. Luttik (2005) Finite equational bases in process algebra: Results and open questions. In: A. Middeldorp , van V. Oostrom , F. van Raamsdonk and R. C. de Vrijer (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday. Springer-Verlag Lecture Notes in Computer Science 3838 338367.

L. Aceto , W. Fokkink and C. Verhoef (2001) Structural operational semantics. In: J. Bergstra , A. Ponse and S. A. Smolka (eds.) Handbook of Process Algebra, Elsevier197292.

L. Aceto , A. Ingolfsdottir , M. Mousavi and M. Reniers (2010b) A rule format for unit elements. In: J. van Leeuwen , A. Muscholl , D. Peleg , J. Pokorný and B. Rumpe (eds.) Proceedings SOFSEM 2010: Theory and Practice of Computer Science, 36th Conference on Current Trends in Theory and Practice of Computer Science. Springer-Verlag Lecture Notes in Computer Science 5901 141152.

J. Baeten and J. Bergstra (1990) Process algebra with a zero object. In: J. C. M. Baeten and J. W. Klop (eds.) Proceedings CONCUR 90. Springer-Verlag Lecture Notes in Computer Science 458 8398.

J. Baeten and F. Vaandrager (1992) An algebra for process creation. Acta Informatica 29 (4) 303334.

B. Bloom , W. Fokkink and R. van Glabbeek (2004) Precongruence formats for decorated trace semantics. ACM Transactions on Computational Logic 5 (1) 2678.

B. Bloom , S. Istrail and A. Meyer (1995) Bisimulation can't be traced. Journal of the ACM 42 (1) 232268.

R. Bruni , D. de Frutos-Escrig , N. Martí-Oliet and U. Montanari (2000) Bisimilarity congruences for open terms and term graphs via tile logic. In: C. Palamidessi (ed.) CONCUR 2000 – Concurrency Theory, 11th International Conference, Proceedings. Springer-Verlag Lecture Notes in Computer Science 1877 259274.

S. Cranen , M. Mousavi and M. Reniers (2008) A rule format for associativity. In: F. van Breugel and M. Chechik (eds.) Proceedings of CONCUR 2008 – Concurrency Theory, 19th International Conference. Springer-Verlag Lecture Notes in Computer Science 5201 447461.

W. Fokkink , R. van Glabbeek and P. de Wind (2006) Compositionality of Hennessy–Milner logic by structural operational semantics. Theoretical Computer Science 354 (3) 421440.

W. Fokkink and C. Verhoef (1998) A conservative look at operational semantics with variable binding. Information and Computation 146 (1) 2454.

R. van Glabbeek (2001) The linear time–branching time spectrum. I. The semantics of concrete, sequential processes. In: J. Bergstra , A. Ponse and S. A. Smolka (eds.) Handbook of Process Algebra, Elsevier399.

J. F. Groote and F. Vaandrager (1992) Structured operational semantics and bisimulation as a congruence. Information and Computation 100 (2) 202260.

M. Hennessy and R. Milner (1985) Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32 (1) 137161.

C. A. R. Hoare (1987) Laws of programming. Communications of the ACM 30 (8) 672686.

K. G. Larsen and X. Liu (1991) Compositionality through an operational semantics of contexts. Journal of Logic and Computation 1 (6) 761795.

R. Milner (1984) A complete inference system for a class of regular behaviours. Journal of Computer and System Sciences 28 439466.

M. Mousavi and M. Reniers (2005) Orthogonal extensions in structural operational semantics. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP'05). Springer-Verlag Lecture Notes in Computer Science 3580 12141225.

M. Mousavi , M. Reniers and J. F. Groote (2005) A syntactic commutativity format for SOS. Information Processing Letters 93 217223.

M. Mousavi , M. Reniers and J. F. Groote (2007) SOS formats and meta-theory: 20 years after. Theoretical Computer Science 373 (3) 238272.

D. Park (1981) Concurrency and automata on infinite sequences. In: P. Deussen (ed.) 5th GI Conference, Karlsruhe, Germany. Springer-Verlag Lecture Notes in Computer Science 104 167183.

A. Rensink (2000) Bisimilarity of open terms. Information and Computation 156 (1-2) 345385.

R. de Simone (1985) Higher-level synchronising devices in Meije–SCCS. Theoretical Computer Science 37 245267.

M. van Weerdenburg (2008) Automating soundness proofs. In M. Hennessy and B. Klin (eds.) Proceedings of the Workshop on Structural Operational Semantics (SOS 2008). Electronic Notes in Theoretical Computer Science 229 (4) 107118.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 46 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.