Skip to main content
    • Aa
    • Aa

Domain theoretic characterisations of quasi-metric completeness in terms of formal balls


We characterise those quasi-metric spaces (X, d) whose poset BX of formal balls satisfies the condition (*) From this characterisation, we then deduce that a quasi-metric space (X, d) is Smyth-complete if and only if BX is a dcpo satisfying condition (*). We also give characterisations in terms of formal balls for sequentially Yoneda complete quasi-metric spaces and for Yoneda complete T1 quasi-metric spaces. Finally, we discuss several properties of the Heckmann quasi-metric on the formal balls of any quasi-metric space.

Hide All
Aliakbari M., Honari B., Pourmahdian M. and Rezaii M. M. (2009) The space of formal balls and models of quasi-metric spaces. Mathematical Structures in Computer Science 19 337355.
Di Concilio A. (1971) Spazi quasimetrici e topologie ad essi associate. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche Napoli 38 113130.
Edalat A. (1995a) Domain theory and integration. Theoretical Computer Science 151 163193.
Edalat A. (1995b) Dynamical systems, measures and fractals via domain theory. Information and Computation 120 3248.
Edalat A. and Heckmann R. (1998) A computational model for metric spaces. Theoretical Computer Science 193 5373.
Edalat A. and Sünderhauf Ph. (1999) Computable Banach spaces via domain theory. Theoretical Computer Science 219 169184.
Engelking R. (1977) General Topology, Monografie Mat. Tom 60, PWN-Polish Scientific Publishers.
Flagg B. and Kopperman R. (1997) Computational models for ultrametric spaces. Electronic Notes in Theoretical Computer Science 6 151159.
Fletcher P. and Lindgren W. F. (1982) Quasi-Uniform Spaces, Marcel Dekker.
Gierz G., Hofmann K. H., Keimel K., Lawson J. D., Mislove M. and Scott D. S. (2003) Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications 93, Cambridge University Press.
Heckmann R. (1999) Approximation of metric spaces by partial metric spaces. Applied Categorical Structures 7 7183.
Kopperman K., Künzi H. P. A. and Waszkiewicz P. (2004) Bounded complete models of topological spaces. Topology and its Applications 139 285297.
Krötzsch M. (2006) Generalized ultrametric spaces in quantitative domain theory. Theoretical Computer Science 368 3049.
Künzi H. P. A. (1993) Nonsymmetric topology. In: Proc. Szekszárd Conf. 4, Bolyai Society of Math. Studies 303338.
Künzi H. P. A. (2001) Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. In: Aull C.E. and Lowen R. (eds.) Handbook of the History of General Topology 3, Kluwer 853968.
Künzi H. P. A. and Schellekens M. P. (2002) On the Yoneda completion of a quasi-metric space. Theoretical Computer Science 278 159194.
Lawson J. (1997) Spaces of maximal points. Mathematical Structures in Computer Science 7 543556.
Martin K. (1998) Domain theoretic models of topological spaces. Electronic Notes in Theoretical Computer Science 13 173181.
Matthews S. G. (1994) Partial metric topology. In: Proceedings 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 183197.
Reilly I. L., Subrhamanyam P. V. and Vamanamurthy M. K. (1982) Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte für Mathematik 93 127140.
Rodríguez-López J., Romaguera S. and Valero O. (2008). Denotational semantics for programming languages, balanced quasi-metrics and fixed points. International Journal of Computer Mathematics 85 623630.
Romaguera S. (1992) Left K-completeness in quasi-metric spaces. Mathematische Nachrichten 157 1523.
Romaguera S. (2009) On computational models for the hyperspace. In: Baswell A. R. (ed.) Advances in Mathematics Research 8, Nova Science Publishers 277294.
Romaguera S., Sapena A. and Tirado P. (2007) The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topology and its Applications 154 21962203.
Romaguera S. and Schellekens M. P. (2005) Partial metric monoids and semivaluation spaces. Topology and its Applications 153 948962.
Romaguera S. and Valero O. (2009) A quantitative computational model for complete partial metric spaces via formal balls. Mathematical Structures in Computer Science 19 541563.
Rutten J. J. M. M. (1998) Weighted colimits and formal balls in generalized metric spaces. Topology and its Applications 89 179202.
Salbany S. (1974) Bitopological Spaces, Compactifications and Completions, Mathematic Monographs 1, Department of Mathematics, University of Cape Town.
Schellekens M. P. (2003) A characterization of partial metrizability. Domains are quantifiable. Theoretical Computer Science 305 409432.
Schellekens M. P. (2004) The correspondence between partial metrics and semivaluations. Theoretical Computer Science 315 135149.
Smyth M.B. (1988) Quasi-uniformities: Reconciling domains with metric spaces. In: Mathematical Foundations of Programming Language Semantics. Springer-Verlag Lecture Notes in Computer Science 298 236253.
Sünderhauf Ph. (1995) Quasi-uniform completeness in terms of Cauchy nets. Acta Mathematica Hungarica 69 4754.
Waszkiewicz P. (2001) Distance and measurement in domain theory. Electronic Notes in Theoretical Computer Science 45 448462.
Waszkiewicz P. (2003) Quantitative continuous domains. Applied Categorical Structures 11 4167.
Waszkiewicz P. (2006) Partial metrisability of continuous posets. Mathematical Structures in Computer Science 16 359372.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 133 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.