Skip to main content Accessibility help

Enhanced coalgebraic bisimulation


We present a systematic study of bisimulation-up-to techniques for coalgebras. This enhances the bisimulation proof method for a large class of state based systems, including labelled transition systems but also stream systems and weighted automata. Our approach allows for compositional reasoning about the soundness of enhancements. Applications include the soundness of bisimulation up to bisimilarity, up to equivalence and up to congruence. All in all, this gives a powerful and modular framework for simplified coinductive proofs of equivalence.

Hide All
Aceto, L., Fokkink, W. and Verhoef, C. (2001). Structural operational semantics. In: Handbook of Process Algebra, Elsevier Science, 197292.
Aczel, P. and Mendler, N. (1989). A final coalgebra theorem. In: Category Theory and Computer Science, LNCS, volume 389, Springer, 357365.
Adámek, J., Koubek, V. and Velebil, J. (2000). A duality between infinitary varieties and algebraic theories. Commentationes Mathematicae Universitatis Carolinae 41 (3) 529542.
Bartels, F. (2004). On Generalised Coinduction and Probabilistic Specification Formats. Ph.D. thesis, CWI, Amsterdam.
Berstel, J. and Reutenauer, C. (1988). Rational Series and Their Languages, Springer.
Bloom, B., Istrail, S. and Meyer, A. (1995). Bisimulation can't be traced. Journal of ACM 42 (1) 232268.
Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J. and Silva, A. (2012). A coalgebraic perspective on linear weighted automata. Information and Computation 211 77105.
Bonchi, F., Petrisan, D., Pous, D. and Rot, J. (2014). Coinduction up-to in a fibrational setting. In: Henzinger, T.A. and Miller, D. (eds.) CSL-LICS 2014, ACM, 20.
Bonchi, F. and Pous, D. (2013). Checking NFA equivalence with bisimulations up to congruence. In: Giacobazzi, R. and Cousot, R. (eds.) POPL, ACM, 457468.
Bonsangue, M.M., Hansen, H.H., Kurz, A. and Rot, J. (2013). Presenting distributive laws. In: Heckel, R. and Milius, S. (eds.) CALCO. Lecture Notes in Computer Science 8089, Springer, Berlin, 95109.
Buchholz, P. and Kemper, P. (2001). Quantifying the dynamic behavior of process algebras. In: de Alfaro, L. and Gilmore, S. (eds.) PAPM-PROBMIV. Lecture Notes in Computer Science, Springer, Berlin, 184199.
Conway, J. (1971). Regular Algebra and Finite Machines, Chapman and Hall.
Endrullis, J., Hendriks, D. and Bodin, M. (2013). Circular coinduction in Coq using bisimulation-up-to techniques. In: Blazy, S., Paulin-Mohring, C. and Pichardie, D. (eds.) ITP 2013. LNCS 7998, Springer, Berlin, 354369.
Gorín, D. and Schröder, L. (2013). Simulations and bisimulations for coalgebraic modal logics. In: Heckel, R. and Milius, S. (eds.) Proceedings of the 5th International Conference on Algebra and Coalgebra in Computer Science (CALCO 2013). Lecture Notes in Computer Science 8089, Springer, Berlin, 253266.
Gumm, H. (1999). Elements of the general theory of coalgebras. In: LUATCS 99, Rand Afrikaans University, South Africa.
Gumm, H. and Schröder, T. (2000). Coalgebraic structure from weak limit preserving functors. Electronic Notes in Theoretical Computer Science 33 111131.
Gumm, H.P. and Schröder, T. (2001). Monoid-labeled transition systems. Electronic Notes in Theoretical Computer Science 44 (1) 185204.
Hermida, C. and Jacobs, B. (1998). Structural induction and coinduction in a fibrational setting. Information and Computation 145 (2) 107152.
Hopcroft, J. and Karp, R. (1971). A linear algorithm for testing equivalence of finite automata. Technical Report 114, Cornell Univ.
Klin, B. (2009). Structural operational semantics for weighted transition systems. In: Palsberg, J. (eds.) Semantics and Algebraic Specification. Lecture Notes in Computer Science 5700, Springer, Berlin, 121139.
Klin, B. (2011). Bialgebras for structural operational semantics: An introduction. TCS 412 (38) 50435069.
Lenisa, M. (1999). From set-theoretic coinduction to coalgebraic coinduction: Some results, some problems. ENTCS 19 222.
Lenisa, M., Power, J. and Watanabe, H. (2000). Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads. ENTCS 33 230260.
Levy, P.B. (2011). Similarity quotients as final coalgebras. In: Hofmann, M. (eds.) FOSSACS 2011. Lecture Notes in Computer Science 6604, Springer, Berlin, 2741.
Luo, L. (2006). An effective coalgebraic bisimulation proof method. Electronic Notes in Theoretical Computer Science 164 (1) 105119.
Marti, J. and Venema, Y. (2012). Lax extensions of coalgebra functors. In: Pattinson, D. and Schröder, L. (eds.) 11th International Workshop on Coalgebraic Methods in Computer Science (CMCS 2012). Lecture Notes in Computer Science, Springer, Berlin, 7399 150169.
Milner, R. (1980). A Calculus of Communicating Systems, Lecture Notes in Computer Science, volume 92, Springer.
Milner, R. (1983). Calculi for synchrony and asynchrony. TCS 25 (3) 267310.
Park, D. (1981). Concurrency and automata on infinite sequences. In: Deussen, P. (eds.) Theoretical Computer Science. Lecture Notes in Computer Science 104, Springer, Berlin, 167183.
Pous, D. (2007). Complete lattices and up-to techniques. In: Proceedings of the APLAS. Springer Lecture Notes in Computer Science 4807 351366.
Pous, D. and Sangiorgi, D. (2012). Enhancements of the bisimulation proof method. In: Advanced Topics in Bisimulation and Coinduction, Cambridge University Press, 233289.
Rot, J., Bonsangue, M. and Rutten, J. (2013a). Coalgebraic bisimulation-up-to. In: van Emde Boas, P., Groen, F., Italiano, G., Nawrocki, J. and Sack, H. (eds.) SOFSEM. Springer Lecture Notes in Computer Science 7741 369381.
Rot, J., Bonsangue, M. and Rutten, J. (2013b). Coinductive proof techniques for language equivalence. In: Dediu, A.-H., Martín-Vide, C. and Truthe, B. (eds.) LATA. Lecture Notes in Computer Science 7810, Springer, Berlin, 480492
Rutten, J. (1998). Relators and metric bisimulations. ENTCS 11 252258.
Rutten, J. (2000). Universal coalgebra: A theory of systems. TCS 249 (1) 380.
Rutten, J. (2003). Behavioural differential equations: A coinductive calculus of streams, automata, and power series. TCS 308 (1–3) 153.
Salomaa, A. and Soittola, M. (1978). Automata-Theoretic Aspects of Formal Power Series, Texts and Monographs on Computer Science, Springer.
Sangiorgi, D. (1998). On the bisimulation proof method. Mathematical Structures in Computer Science 8 (5) 447479.
Sangiorgi, D. (2012). An introduction to Bisimulation and Coinduction, Cambridge University Press.
Staton, S. (2011). Relating coalgebraic notions of bisimulation. LMCS 7 (1).
Trnková, V. (1980). General theory of relational automata. Fundamenta Informaticae 3 (2) 189234.
Turi, D. and Plotkin, G. (1997). Towards a mathematical operational semantics. In: LICS, IEEE Computer Society, 280–291.
Winter, J., Bonsangue, M.M. and Rutten, J.J.M.M. (2011). Context-free languages, coalgebraically. In: Corradini, A., Klin, B. and Cîrstea, C. (eds.) CALCO. Lecture Notes in Computer Science 6859, Springer, Berlin, 359376.
Zhou, X., Li, Y., Li, W., Qiao, H. and Shu, Z. (2010). Bisimulation proof methods in a path-based specification language for polynomial coalgebras. In: APLAS. Lecture Notes in Computer Science 6461, Springer, Berlin, 239254.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed