Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T03:56:19.541Z Has data issue: false hasContentIssue false

Execution time of λ-terms via denotational semantics and intersection types

Published online by Cambridge University Press:  30 January 2017

DANIEL DE CARVALHO*
Affiliation:
Innopolis University, Universitetskaya St, 1, Innopolis, 420500, Tatarstan, Russia Email: d.carvalho@innopolis.ru

Abstract

The multiset-based relational model of linear logic induces a semantics of the untyped λ-calculus, which corresponds with a non-idempotent intersection type system, System R. We prove that, in System R, the size of type derivations and the size of types are closely related to the execution time of λ-terms in a particular environment machine, Krivine's machine.

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baillot, P. and Terui, K. (2004). Light types for polynomial time computation in lambda-calculus. In: Proceedings of LICS 2004, IEEE Computer Society Press, 266275.CrossRefGoogle Scholar
Barendregt, H.P. (1984). The Lambda Calculus. Its Syntax and Semantics, revised edition, North-Holland.Google Scholar
Benton, P.N., Bierman, G.M., dePaiva, V.C.V. Paiva, V.C.V. and Hyland, J.M.E. (1992). Term assignment for intuitionistic linear logic. Technical Report 262, Computer Laboratory, University of Cambridge.Google Scholar
Bierman, G.M. (1993). On intuitionistic linear logic. PhD thesis, University of Cambridge.Google Scholar
Bierman, G.M. (1995). What is a categorical model of intuitionistic linear logic? In: Proceedings of Conference on Typed Lambda Calculi and Applications, vol. 902, Springer-Verlag.Google Scholar
Boudol, G., Curien, P.-L. and Lavatelli, C. (1999). A semantics for lambda calculi with resources. Mathematical Structures in Comuter Science 9 (4) 437482.CrossRefGoogle Scholar
Bucciarelli, A. and Ehrhard, T. (2001). On phase semantics and denotational semantics: The exponentials. Annals of Pure and Applied Logic 109 (3) 205241.CrossRefGoogle Scholar
Bucciarelli, A., Ehrhard, T. and Manzonetto, G. (2007). Not enough points is enough. In: Duparc, J. and Henzinger, T.A. (eds.) CSL'07: Proceedings of 16th Computer Science Logic. Springer Lecture Notes in Computer Science 4646 268–282.Google Scholar
de Carvalho, D. (2006). Execution time of lambda-terms via non-uniform semantics and intersection types. Preprint, Institut de Mathématiques de Luminy.Google Scholar
de Carvalho, D. (2007). Sémantiques de la logique linéaire et temps de calcul. PhD thesis, Université Aix-Marseille 2.Google Scholar
de Carvalho, D., Pagani, M. and Tortora de Falco, L. (2008). A semantic measure of the execution time in linear logic. Theoretical Computer Science 412 (20) 18841902.CrossRefGoogle Scholar
Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1980). Principal type schemes and λ-calculus semantics. In: Seldin, J.P. and Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, 535560.Google Scholar
Danos, V. and Regnier, L. (2004). Head linear reduction. Manuscript.Google Scholar
Dezani-Ciancaglini, M., Honsell, F. and Motohama, Y. (2005). Compositional characterisations of λ-terms using intersection types. Theoretical Computer Science 340 (3) 459496.Google Scholar
Ehrhard, T. and Regnier, L. (2006a). Uniformity and the Taylor expansion of ordinary lambda-terms. Theoretical Computer Science 364 (2) 166195.Google Scholar
Ehrhard, T. and Regnier, L. (2006b). Böhm trees, Krivine's machine and the Taylor expansion of lambda-terms. In: Beckmann, A., Berger, U., Löwe, B. and Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, Proceedings of the 2nd Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30–July 5, 2006, Springer-Verlag, 186197.Google Scholar
Girard, J.Y. (1986). The system F of variable types, fifteen years later. Theoretical Computer Science 45 (2) 159192.Google Scholar
Girard, J.Y. (1987). Linear logic. Theoretical Computer Science 50 (1) 1102.CrossRefGoogle Scholar
Guerrini, S. (2004). Proof nets and the λ-calculus. In: Ehrhard, T., Girard, J.-Y., Ruet, P. and Scott, P. (eds.) Linear Logic in Computer Science, Cambridge University Press, 65118.Google Scholar
Kfoury, A.J. (2000). A linearization of the Lambda-calculus and consequences. Journal of Logic and Computation 10 (3) 411436.Google Scholar
Kfoury, A.J., Mairson, H.G., Turbak, F. A. and Wells, J.B. (1999). Relating typability and expressiveness in finite-rank intersection types systems (Extended Abstract). In: ICFP, 90–101.Google Scholar
Krivine, J.L. (1990). Lambda-Calcul Types et Modèles, Masson.Google Scholar
Krivine, J.L. (2007). A call-by-name lambda-calculus machine. Higher Order and Symbolic Computation 20 (3) 199207.Google Scholar
Lafont, Y. (1988). Logiques, catégories et machines. PhD thesis, Université Paris 7.Google Scholar
Lambek, J. and Scott, P.J. (1986). Introduction to Higher Order Categorical Logic, Cambridge University Press.Google Scholar
Mac, Lane S. (1998). Categories for the Working Mathematician, Springer-Verlag.Google Scholar
Mascari, G.F. and Pedicini, M. (1994). Head linear reduction and pure proof net extraction. Theoretical Computer Science 135 (1) 111137.Google Scholar
Neergaard, P.M. and Mairson, H.G. (2004). Types, potency, and idempotency: Why nonlinearity and amnesia make a type system work. In: ICFP '04: Proceedings of the 9th ACM SIGPLAN International Conference on Functional Programming, ACM Press, 138–149.Google Scholar
Regnier, L. (1992). Lambda-calcul et réseaux. PhD thesis, Université Paris 7.Google Scholar
Ronchi, Della Rocca S. (1988). Principal type scheme and unification for intersection type discipline. Theoretical Computer Science 59 181209.Google Scholar
Seely, R. (1989). Linear logic, *-autonomous categories and cofree coalgebras. In: Categories in Computer Science and Logic, Contemporary Mathematics 92, American Mathematical Society, 371–382.Google Scholar
Selinger, P. (2002). The lambda calculus is algebraic. Journal of Functional Programming 12 (6) 549566.Google Scholar
Tortora de Falco, L. (2000). Réseaux, cohérence et expériences obsessionnelles. PhD thesis, Université Paris 7.Google Scholar