Skip to main content Accessibility help

Extensions of valuations


Continuous valuations have been proposed by several authors as a way of modelling probabilistic non-determinism in programming language semantics. Let $(X, {\cal O})$ be a topological space. A quasi-simple valuation on $X$ is the sup of a directed family of simple valuations. We show that quasi-simple valuations are exactly those valuations that extend to continuous valuations to the Alexandroff topology on the specialisation preordering of the topology $\cal O$. A number of applications are presented. In particular, we recover Jones' result that every continuous valuation is quasi-simple if $X$ is a continuous dcpo – in this case there is a least extension to the Alexandroff topology. We show that this can be refined if $X$ is algebraic, where every continuous valuation is the sup of a directed family of simple valuations based on finite elements. We exhibit another class of spaces in which every continuous valuation is quasi-simple, the so-called finitarily coherent spaces – in this case there is a largest extension to the Alexandroff topology. In general, the extension to the Alexandroff topology is not unique, unless, for example, the original valuation is bicontinuous. We also show that other natural spaces of valuations, namely those of discrete valuations and point-continuous valuations, can be characterised by similar extension theorems.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed