Skip to main content Accessibility help

First order in Ludics


In Girard (2001), J.-Y. Girard presents a new theory, The Ludics, which is a model of realisibility of logic that associates proofs with designs, and formulas with behaviours. In this article we study the interpretation in this semantics of formulas with first-order quantifications and their proofs. We extend to the first-order quantifiers the full completeness theorem obtained in Girard (2001) for $MALL_2$. A significant part of this article is devoted to the study of a uniformity property for the families of designs that represent proofs of formulas depending on a first-order free variable.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed