Skip to main content
×
×
Home

Formalising foundations of mathematics

  • MIHNEA IANCU (a1) and FLORIAN RABE (a1)
Abstract

Over recent decades there has been a trend towards formalised mathematics, and a number of sophisticated systems have been developed both to support the formalisation process and to verify the results mechanically. However, each tool is based on a specific foundation of mathematics, and formalisations in different systems are not necessarily compatible. Therefore, the integration of these foundations has received growing interest. We contribute to this goal by using LF as a foundational framework in which the mathematical foundations themselves can be formalised and therefore also the relations between them. We represent three of the most important foundations – Isabelle/HOL, Mizar and ZFC set theory – as well as relations between them. The relations are formalised in such a way that the framework permits the extraction of translation functions, which are guaranteed to be well defined and sound. Our work provides the starting point for a systematic study of formalised foundations in order to compare, relate and integrate them.

Copyright
References
Hide All
Aczel, P. (1998) On Relating Type Theories and Set Theories. In: Altenkirch, T., Naraschewski, W. and Reus, B. (eds.) Types for Proofs and Programs 1–18.
Bancerek, G. (2003) On the structure of Mizar types. Electronic Notes in Theoretical Computer Science 85 6985.
Bourbaki, N. (1964) Univers. In: Séminaire de Géométrie Algébrique du Bois Marie – Théorie des topos et cohomologie étale des schémas, Springer-Verlag 185217.
Brown, C. (2006) Combining Type Theory and Untyped Set Theory. In: Furbach, U. and Shankar, N. (eds.) International Joint Conference on Automated Reasoning. Springer-Verlag Lecture Notes in Computer Science 4130205219.
Church, A. (1940) A Formulation of the Simple Theory of Types. Journal of Symbolic Logic 5 (1)5668.
Constable, R. et al. . (1986) Implementing Mathematics with the Nuprl Development System, Prentice-Hall.
Coquand, T. and Huet, G. (1988) The Calculus of Constructions. Information and Computation 76 (2/3)95120.
de Bruijn, N. (1970) The Mathematical Language AUTOMATH. In: Laudet, M. (ed.) Proceedings of the Symposium on Automated Demonstration. Springer-Verlag Lecture Notes in Computer Science 252961.
de Nivelle, H. (2010) Classical Logic with Partial Functions. In: Giesl, J. and Hähnle, R. (eds.) Automated Reasoning. Springer-Verlag Lecture Notes in Computer Science 6173203217.
Dumbrava, S. and Rabe, F. (2010) Structuring Theories with Partial Morphisms, Workshop on Abstract Development Techniques.
Farmer, W., Guttman, J. and Thayer, F. (1993) IMPS: An Interactive Mathematical Proof System. Journal of Automated Reasoning 11 (2)213248.
Fraenkel, A. (1922) The notion of ‘definite’ and the independence of the axiom of choice.
Gordon, M. (1988) HOL: A Proof Generating System for Higher-Order Logic. In: Birtwistle, G. and Subrahmanyam, P. (eds.) VLSI Specification, Verification and Synthesis, Kluwer-Academic Publishers 73128.
Gordon, M., Milner, R. and Wadsworth, C. (1979) Edinburgh LCF: A Mechanized Logic of Computation. Springer-Verlag Lecture Notes in Computer Science 78.
Gordon, M. and Pitts, A. (1993) The HOL Logic. In: Gordon, M. and Melham, T. (eds.) Introduction to HOL, Part III, Cambridge University Press 191232.
Hales, T. (2003) The flyspeck project. (Available at http://code.google.com/p/flyspeck/.)
Harper, R., Honsell, F. and Plotkin, G. (1993) A framework for defining logics. Journal of the Association for Computing Machinery 40 (1)143184.
Harper, R., Sannella, D. and Tarlecki, A. (1994) Structured presentations and logic representations. Annals of Pure and Applied Logic 67 113160.
Harrison, J. (1996) HOL Light: A tutorial introduction. In: Srivas, M. and Camilleri, A. (eds.) Proceedings of the First International Conference on Formal Methods in Computer-Aided Design (FMCAD'96). Springer-Verlag Lecture Notes in Computer Science 1166265269.
Hurd, J. (2009) OpenTheory: Package Management for Higher Order Logic Theories. In: Reis, G. D. and Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, ACM 3137.
Iancu, M. and Rabe, F. (2010) Formalizing Foundations of Mathematics, LF Encodings. (Available at https://latin.omdoc.org/wiki/FormalizingFoundations.)
Jaśkowski, S. (1934) On the rules of suppositions in formal logic. Studia Logica 1 532.
Keller, C. and Werner, B. (2010) Importing HOL Light into Coq. In: Kaufmann, M. and Paulson, L. (eds.) Proceedings Interactive Theorem Proving, ITP 2010. Springer-Verlag Lecture Notes in Computer Science 6172307322.
Klein, G., Nipkow, T. and Paulson, L. (2004) Archive of Formal Proofs. (Available at http://afp.sourceforge.net/.)
Kohlhase, M., Mossakowski, T. and Rabe, F. (2009) The LATIN Project. (Available at https://trac.omdoc.org/LATIN/.)
Krauss, A. and Schropp, A. (2010) A Mechanized Translation from Higher-Order Logic to Set Theory. In: Kaufmann, M. and Paulson, L. (eds.) Proceedings Interactive Theorem Proving, ITP 2010. Springer-Verlag Lecture Notes in Computer Science 6172323338.
Landau, E. (1930) Grundlagen der Analysis, Akademische Verlagsgesellschaft.
Lovas, W. and Pfenning, F. (2009) Refinement Types as Proof Irrelevance. In: Curien, P. (ed.) Typed Lambda Calculi and Applications. Springer-Verlag Lecture Notes in Computer Science 5608157171.
Matuszewski, R. (1990) Formalized Mathematics. (Available at http://mizar.uwb.edu.pl/fm/.)
McLaughlin, S. (2006) An Interpretation of Isabelle/HOL in HOL Light. In: Shankar, N. and Furbach, U. (eds.) International Joint Conference on Automated Reasoning. Springer-Verlag Lecture Notes in Computer Science 4130192204.
Mizar, (2009) Grammar, version 7.11.02. (Available at http://mizar.org/language/mizar-grammar.xml.)
Naumov, P., Stehr, M. and Meseguer, J. (2001) The HOL/NuPRL proof translator – a practical approach to formal interoperability. In: Boulton, R. and Jackson, P. (eds.) 14th International Conference on Theorem Proving in Higher Order Logics. Springer-Verlag Lecture Notes in Computer Science 2152329345.
Nipkow, T., Paulson, L. and Wenzel, M. (2002) Isabelle/HOL – A Proof Assistant for Higher-Order Logic. Springer-Verlag Lecture Notes in Computer Science 2283.
Norell, U. (2005) The Agda WiKi. (Available at http://wiki.portal.chalmers.se/agda.)
Obua, S. and Skalberg, S. (2006) Importing HOL into Isabelle/HOL. In: Shankar, N. and Furbach, U. (eds.) International Joint Conference on Automated Reasoning. Springer-Verlag Lecture Notes in Computer Science 4130298302.
Owre, S., Rushby, J. and Shankar, N. (1992) PVS: A Prototype Verification System. In: Kapur, D. (ed.) 11th International Conference on Automated Deduction (CADE). Springer-Verlag Lecture Notes in Computer Science 607748752.
Paulson, L. (1994) Isabelle: A Generic Theorem Prover. Springer-Verlag Lecture Notes in Computer Science 828.
Paulson, L. and Coen, M. (1993) Zermelo-Fraenkel Set Theory. Isabelle distribution, ZF/ZF.thy.
Pfenning, F. and Schürmann, C. (1999) System description: Twelf – a meta-logical framework for deductive systems. Lecture Notes in Computer Science 1632 202206.
Pfenning, F., Schürmann, C., Kohlhase, M., Shankar, N. and Owre, S. (2003) The Logosphere Project. (Available at http://www.logosphere.org/.)
Poswolsky, A. and Schürmann, C. (2008) System Description: Delphin – A Functional Programming Language for Deductive Systems. In: Abel, A. and Urban, C. (eds.) International Workshop on Logical Frameworks and Metalanguages: Theory and Practice. Electronic Notes in Theoretical Computer Science 228 135141.
Rabe, F. (2010) Representing Isabelle in LF. In: Crary, K. and Miculan, M. (eds.) Logical Frameworks and Meta-languages: Theory and Practice. EPTCS 34 8599.
Rabe, F. and Schürmann, C. (2009) A Practical Module System for LF. In: Cheney, J. and Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), ACM Press 4048.
Schürmann, C. and Stehr, M. (2004) An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf. In: Hermann, M. and Voronkov, A. (eds.) 11th International Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer-Verlag Lecture Notes in Computer Science 4246150166.
Hales, T., Gonthier, G., Harrison, J. and Wiedijk, F. (2008) A Special Issue on Formal Proof. Notices of the AMS 55 (11).
Tarski, A. (1938) Über Unerreichbare Kardinalzahlen. Fundamenta Mathematicae 30 176183.
Trybulec, A. (1989) Tarski Grothendieck Set Theory. Journal of Formalized Mathematics, Axiomatics 1 (1)911.
Trybulec, A. and Blair, H. (1985) Computer Assisted Reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, Morgan Kaufmann Publishers 2628.
Urban, J. (2003) Translating Mizar for First Order Theorem Provers. In: Asperti, A., Buchberger, B. and Davenport, J. (eds.) Mathematical Knowledge Management: Second International Conference, MKM 2003. Springer-Verlag Lecture Notes in Computer Science 2594203215.
van Benthem Jutting, L. (1977) Checking Landau's ‘Grundlagen’ in the AUTOMATH system, Ph.D. thesis, Eindhoven University of Technology.
Wenzel, M. (2009) The Isabelle/Isar Reference Manual. (Available at http://isabelle.in.tum.de/documentation.html.)
Whitehead, A. and Russell, B. (1913) Principia Mathematica, Cambridge University Press.
Wiedijk, F. (2006) Is ZF a hack? Comparing the complexity of some (formalist interpretations of) foundational systems for mathematics. Journal of Applied Logic 4 (4)622645.
Wiedijk, F. (2007) Mizar's Soft Type System. In: Schneider, K. and Brandt, J. (eds.) Theorem Proving in Higher Order Logics. Springer-Verlag Lecture Notes in Computer Science 4732383399.
Wiener, N. (1967) A Simplification of the Logic of Relations. In: van Heijenoort, J. (ed.) From Frege to Gödel, Harvard University Press 224227.
Zermelo, E. (1908) Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen 65 261281. (English title: Investigations in the foundations of set theory I.)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed