Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:12:27.524Z Has data issue: false hasContentIssue false

Game characterizations for the number of quantifiers

Published online by Cambridge University Press:  10 January 2024

Lauri Hella*
Affiliation:
University of Tampere, Tampere, Finland
Kerkko Luosto
Affiliation:
University of Tampere, Tampere, Finland
*
Corresponding author: Lauri Hella; Email: lauri.hella@tuni.fi

Abstract

A game that characterizes equivalence of structures with respect to all first-order sentences containing a given number of quantifiers was introduced by Immerman in 1981. We define three other games and prove that they are all equivalent to the Immerman game, and hence also give a characterization for the number of quantifiers needed for separating structures. In the Immerman game, Duplicator has a canonical optimal strategy, and hence Duplicator can be completely removed from the game by replacing her moves with default moves given by this optimal strategy. On the other hand, in the last two of our games there is no such optimal strategy for Duplicator. Thus, the Immerman game can be regarded as a one-player game, but two of our games are genuine two-player games.

Type
Special Issue: Logic, Databases and Complexity
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, W. (1937). Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Mathematische Annalen 114 (1) 305315. doi: 10.1007/BF01594179.CrossRefGoogle Scholar
Adler, M. and Immerman, N. (2003). An n! lower bound on formula size. ACM Transactions on Computational Logic 4 (3) 296314. doi: 10.1145/772062.772064.CrossRefGoogle Scholar
Carmosino, M., Fagin, R., Immerman, N., Kolaitis, P. G., Lenchner, J. and Sengupta, R. (2023). A finer analysis of multi-structural games and beyond. CoRR, abs/2301.13329. doi: 10.48550/arXiv.2301.13329.CrossRefGoogle Scholar
Ebbinghaus, H.-D., Flum, J. and Thomas, W. (1984). Mathematical Logic , Undergraduate Texts in Mathematics, Springer. ISBN 978-0-387-90895-3.Google Scholar
Ehrenfeucht, A. (1961). An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae 49 (2) 129141. URL http://eudml.org/doc/213582.CrossRefGoogle Scholar
Fagin, R., Lenchner, J., Regan, K. W. and Vyas, N. (2021). Multi-structural games and number of quantifiers. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29–July 2, 2021. IEEE, 1–13. doi: 10.1109/LICS52264.2021.9470756.CrossRefGoogle Scholar
Fagin, R., Lenchner, J., Vyas, N. and Ryan Williams, R. (2022). On the number of quantifiers as a complexity measure. In: Szeider, S., Ganian, R. and Silva, A. (eds.) 47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22–26, 2022, Vienna, Austria, LIPIcs, vol. 241, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 48:1–48:14. doi: 10.4230/LIPIcs.MFCS.2022.48.CrossRefGoogle Scholar
Fraïssé, R. (1957). Sur quelques classifications des systèmes de relations. french with english summary. publications scientifiques de l’université d’alger, série a, sciences mathématiques, vol. 1 no. 1, pp. 35–182. Journal of Symbolic Logic 22 (4) 371–372. doi: 10.2307/2963939.CrossRefGoogle Scholar
French, T., van der Hoek, W., Iliev, P. and Kooi, B. P. (2013). On the succinctness of some modal logics. Artificial Intelligence 197 5685. doi: 10.1016/j.artint.2013.02.003.CrossRefGoogle Scholar
Grohe, M. and Schweikardt, N. (2005). The succinctness of first-order logic on linear orders. Logical Methods in Computer Science 1 (1). doi: 10.2168/LMCS-1(1:6)2005.Google Scholar
Hella, L. and Luosto, K. (1999). Prenex normal form game, unpublishded manuscript.Google Scholar
Hella, L. and Väänänen, J. (2015). The size of a formula as a measure of complexity. In: Hirvonen, Å., Kontinen, J., Kossak, R. and Villaveces, A. (eds.) Logic Without Borders - Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, Ontos Mathematical Logic, vol. 5, De Gruyter, 193–214. doi: 10.1515/9781614516873.193.CrossRefGoogle Scholar
Hella, L. and Vilander, M. (2019). Formula size games for modal logic and μ-calculus. Journal of Logic and Computation 29 (8) 13111344. doi: 10.1093/logcom/exz025.CrossRefGoogle Scholar
Immerman, N. (1999). Descriptive Complexity , Graduate Texts in Computer Science, Springer. ISBN 978-1-4612-6809-3. doi: 10.1007/978-1-4612-0539-5.Google Scholar
Immerman, N. (1981). Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences 22 (3) 384406. doi: 10.1016/0022-0000(81)90039-8.CrossRefGoogle Scholar
Krawczyk, A. and Krynicki, M. (1976). Ehrenfeucht games for generalized quantifiers. In: Marek, W., Srebrny, M. and Zarach, A. (eds.) Set Theory and Hierarchy Theory A Memorial Tribute to Andrzej Mostowski, Berlin, Heidelberg, Springer Berlin Heidelberg, 145–152. ISBN 978-3-540-38122-8.Google Scholar
Lutz, C. (2006). Complexity and succinctness of public announcement logic. In: Nakashima, H., Wellman, M. P., Weiss, G. and Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8–12, 2006, ACM, 137–143. doi: 10.1145/1160633.1160657.CrossRefGoogle Scholar
Razborov, A. A. (1990). Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica 10 (1) 8193. doi: 10.1007/BF02122698.CrossRefGoogle Scholar
van der Hoek, W. and Iliev, P. (2014). On the relative succinctness of modal logics with union, intersection and quantification. In: Bazzan, A. L. C., Huhns, M. N., Lomuscio, A. and Scerri, P. (eds.) International conference on Autonomous Agents and Multi-Agent Systems, AAMAS’14, Paris, France, May 5–9, 2014, IFAAMAS/ACM, 341–348. URL http://dl.acm.org/citation.cfm?id=2615788.Google Scholar
van Ditmarsch, H., Fan, J., van der Hoek, W. and Iliev, P. (2014). Some exponential lower bounds on formula-size in modal logic. In: Goré, R., Kooi, B. P. and Kurucz, A. (eds.) Advances in Modal Logic 10, Invited and Contributed Papers from the Tenth Conference on “Advances in Modal Logic,” held in Groningen, The Netherlands, August 5–8, 2014, College Publications, 139–157. URL http://www.aiml.net/volumes/volume10/Ditmarsch-Fan-Hoek-Iliev.pdf.Google Scholar