Published online by Cambridge University Press: 01 August 2000
The strict globular ω-categories formalize the execution paths of a parallel automaton and the homotopies between them. One associates to such (and any) ω-category [Cscr ] three homology theories. The first one is called the globular homology. It contains the oriented loops of [Cscr ]. The two other ones are called the negative (respectively, positive) corner homology. They contain in a certain manner the branching areas of execution paths or negative corners (respectively, the merging areas of execution paths or positive corners) of [Cscr ]. Two natural linear maps called the negative (respectively, the positive) Hurewicz morphism from the globular homology to the negative (respectively, positive) corner homology are constructed. We explain the reason why these constructions allow the reinterpretation of some geometric problems coming from computer science.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.