Skip to main content
×
×
Home

A homotopy-theoretic model of function extensionality in the effective topos

  • DAN FRUMIN (a1) and BENNO VAN DEN BERG (a2)
Abstract

We present a way of constructing a Quillen model structure on a full subcategory of an elementary topos, starting with an interval object with connections and a certain dominance. The advantage of this method is that it does not require the underlying topos to be cocomplete. The resulting model category structure gives rise to a model of homotopy type theory with identity types, Σ- and Π-types, and functional extensionality. We apply the method to the effective topos with the interval object ∇2. In the resulting model structure we identify uniform inhabited objects as contractible objects, and show that discrete objects are fibrant. Moreover, we show that the unit of the discrete reflection is a homotopy equivalence and the homotopy category of fibrant assemblies is equivalent to the category of modest sets. We compare our work with the path object category construction on the effective topos by Jaap van Oosten.

Copyright
References
Hide All
Angiuli, C., Harper, R. and Wilson, T. (2016). Computational higher type theory I: Abstract cubical realizability. arXiv:1604.08873.
Awodey, S. and Warren, M. A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society 146 (1) 4555.
Bezem, M., Coquand, T. and Huber, S. (2014). A model of type theory in cubical sets. In: Proceedings of the 19th International Conference on Types for Proofs and Programs (TYPES 2013), vol. 26, 107–128.
Bourke, J. and Garner, R. (2016). Algebraic weak factorisation systems I: Accessible AWFS. Journal of Pure and Applied Algebra 220 (1) 108147.
Cisinski, D.-C. (2002). Théories homotopiques dans les topos. Journal of Pure and Applied Algebra 174 (1) 4382.
Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2018). Cubical type theory: A constructive interpretation of the univalence axiom. In: Proceedings of the 21st International Conference on Types for Proofs and Programs (TYPES 2015), Leibniz International Proceedings in Informatics (LIPIcs), 5:1–5:34, vol. 69, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany.
Curien, P.-L. (1993). Substitution up to isomorphism. Fundamenta Informaticae 19 (1–2) 5185.
Frumin, D. (2016) Weak Factorisation Systems in the Effective Topos, Master's thesis, University of Amsterdam, The Netherlands. Available at https://www.illc.uva.nl/Research/Publications/Reports/MoL-2016-13.text.pdf.
Gambino, N. and Sattler, C. (2017). The Frobenius condition, right properness, and uniform fibrations. Journal of Pure and Applied Algebra 221 (12) 30273068.
Hofmann, M. (1995). Extensional Concepts in Intensional Type Theory, University of Edinburgh, College of Science and Engineering, School of Informatics.
Hofmann, M. and Streicher, T. (1998). The groupoid interpretation of type theory. In: Twenty-Five Years of Constructive Type Theory (Venice, 1995) 83111, Oxford Logic Guides, vol. 36, Oxford University Press, New York.
Hyland, M. (1982). The effective topos. In: The L.E.J. Brouwer Centenary Symposium, North-Holland, 165–216.
Hyland, M. (1988). A small complete category. Annals of Pure and Applied Logic 40 (2) 135165.
Joyal, A. and Tierney, M. (2008) Notes on simplicial homotopy. Available at http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf.
Kapulkin, C. and Lumsdaine, P.L. (2016). The simplicial model of univalent foundations (after Voevodsky). arXiv:1211.2851.
Kleene, S.C. (1945). On the interpretation of intuitionistic number theory. Journal of Symbolic Logic 10 109124.
Lumsdaine, P.L. (2010). Weak ω-categories from intensional type theory. Logical Methods in Computer Science 6 (3:24) pp. 119.
Lumsdaine, P. L. and Warren, M. A. (2015). The local universes model: An overlooked coherence construction for dependent type theories. ACM Transactions on Computational Logic 16 (3) Art no. 23.
van Oosten, J. (2008). Realizability: An Introduction to Its Categorical Side, Studies in Logic, vol. 152, Elsevier Science, San Diego, USA.
van Oosten, J. (2015). A notion of homotopy for the effective topos. Mathematical Structures in Computer Science 25 (05) 11321146.
Orton, I. and Pitts, A.M. (2016). Axioms for modelling cubical type theory in a topos. In: nad, J.-M. Talbot, L.R. (ed.) 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Leibniz International Proceedings in Informatics (LIPIcs) 24:1–24:19, vol. 62, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany.
Riehl, E. (2011). Algebraic model structures. New York Journal of Mathematics 17 173231.
Riehl, E. (2014). Categorical Homotopy Theory, Cambridge University Press.
Rosolini, G. (1986) Continuity and effectiveness in topoi. PhD thesis, Carnegie Mellon University. Available at ftp://ftp.disi.unige.it/pub/person/RosoliniG/papers/coneit.ps.gz.
Seely, R. A. G. (1984). Locally cartesian closed categories and type theory. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 95, Cambridge University Press, 33–48.
Shulman, M. (2015). Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures in Computer Science 25 (5) 12031277.
Streicher, T. (1991). Semantics of Type Theory, Correctness, Completeness and Independence Results, Progress in Theoretical Computer Science, Birkhäuser.
Streicher, T. (2007/2008) Realizability. Lecture notes. Available at http://www.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf.
Swan, A. (2015) Identity Types in an Algebraic Model Structure. Draft. Available at http://sites.google.com/site/wakelinswan/idams.pdf.
The Univalent Foundations Program (2013). Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study. Available at https://homotopytypetheory.org/book.
van den Berg, B. (2016). Path categories and propositional identity types. ACM Transactions on Computational Logic. arXiv:1604.06001.
van den Berg, B. and Garner, R. (2011). Types are weak ω-groupoids. Proceedings of the London Mathematical Society 102 (2) 370394.
van den Berg, B. and Garner, R. (2012). Topological and simplicial models of identity types. ACM Transactions on Computational Logic 13 (1), 3:13:44.
Voevodsky, V. (2010). Univalent foundations project. A modified version of an NSF grant application. Available at http://www.math.ias.edu/vladimir/files/univalent_foundations_project.pdf.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed