Skip to main content
×
×
Home

The infinitary lambda calculus of the infinite eta Böhm trees

  • PAULA SEVERI (a1) and FER-JAN DE VRIES (a1)
Abstract

In this paper, we introduce a strong form of eta reduction called etabang that we use to construct a confluent and normalising infinitary lambda calculus, of which the normal forms correspond to Barendregt's infinite eta Böhm trees. This new infinitary perspective on the set of infinite eta Böhm trees allows us to prove that the set of infinite eta Böhm trees is a model of the lambda calculus. The model is of interest because it has the same local structure as Scott's D -models, i.e. two finite lambda terms are equal in the infinite eta Böhm model if and only if they have the same interpretation in Scott's D -models.

Copyright
References
Hide All
Abramsky S. and Ong C.-H.L. (1993). Full abstraction in the lazy lambda calculus. Information and Computation 105 (2) 159267.
Arnold A. and Nivat M. (1980). The metric space of infinite trees. Algebraic and topological properties. Annales Societatis Mathematicae Poloniae Séries IV: Fundamenta Informatica III–4 445476.
Bakel S.v., Barbanera F., Dezani-Ciancaglini M. and de Vries F.J. (2002). Intersection types for λ-trees. Theoretical Computer Science 272 (1–2) 340.
Barbanera F., Dezani-Ciancaglini M. and de Vries F.J. (1998). Types for trees. In: PROCOMET'98 (Shelter Island, 1998), Chapman & Hall, London 629.
Barendregt H.P. (1984). The Lambda Calculus: Its Syntax and Semantics, North-Holland, Amsterdam.
Barendregt H.P. (1992). Lambda calculi with types. In: Abramsky S., Gabbay D. M. and Maibaum T. S. E. (eds.) Handbook of Logic in Computer Science, vol. 2, Oxford University Press, Oxford 117309.
Berarducci A. (1996). Infinite λ-calculus and non-sensible models. In: Logic and Algebra (Pontignano, 1994), Dekker, New York 339377.
Coppo M., Dezani-Ciancaglini M. and Zacchi M. (1987). Type theories, normal forms, and D -lambda-models. Information and Computation 72 (2) 85116.
Hyland J.M.E. (1975). A survey of some useful partial order relations on terms of the lambda calculus. In: Böhm C. (ed.) Lambda Calculus and Computer Science Theory. vol. 37, Springer-Verlag Lecture Notes in Computer Science 8393.
Kennaway J.R. and de Vries F.J. (2003). Infinitary rewriting. In: Terese, (ed.) Term Rewriting Systems, vol. 55, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press 668711.
Kennaway J.R., Klop J.W., Sleep M.R. and de Vries F.J. (1995a). Infinite lambda calculus and Böhm models. In: Rewriting Techniques and Applications, vol. 914, Lecture Notes in Computer Science, Springer-Verlag 257270.
Kennaway J.R., Klop J.W., Sleep M.R. and de Vries F.J. (1995b). Transfinite reductions in orthogonal term rewriting systems. Information and Computation 119 (1) 1838.
Kennaway J.R., Klop J.W., Sleep M.R. and de Vries F.J. (1997). Infinitary lambda calculus. Theoretical Computer Science 175 (1) 93125.
Kennaway J.R., van Oostrom V. and de Vries F.J. (1999). Meaningless terms in rewriting. Journal of Functional Logic Programming 1999 (1) 35.
Lévy J.-J. (1976). An algebraic interpretation of the λβK-calculus, and an application of a labelled λ-calculus. Theoretical Computer Science 2 (1) 97114.
Longo G. (1983). Set-theoretical models of λ-calculus: Theories, expansions, isomorphisms. Annals of Pure and Applied Logic 24 (2) 153188.
Severi P.G. and de Vries F.J. (2002). An extensional Böhm model. In: Rewriting Techniques and Applications, vol. 2378, Lecture Notes in Computer Science, Springer-Verlag 159173.
Severi P.G. and de Vries F.J. (2005a). Continuity and discontinuity in lambda calculus. In: Typed Lambda Calculus and Applications, vol. 3461, Lecture Notes in Computer Science, Springer-Verlag 103116.
Severi P.G. and de Vries F.J. (2005b). Order structures for Böhm-like models. In: Computer Science Logic, vol. 3634, Lecture Notes in Computer Science, Springer-Verlag 103116.
Severi P.G. and de Vries F.J. (2011). Weakening the axiom of overlap in the infinitary lambda calculus. In: Rewriting Techniques and Applications, vol. 10, Leibniz International Proceedings in Informatics (LIPIcs) 313328.
Simonsen J.G. (2004). On confluence and residuals in cauchy convergent transfinite rewriting. Information Processing Letters 91 (3) 141146.
Wadsworth C.P. (1976). The relation between computational and denotational properties for Scott's D -models of the lambda-calculus. SIAM Journal on Computing 5 (3) 488521.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th February 2018. This data will be updated every 24 hours.