Hostname: page-component-5b777bbd6c-7mr9c Total loading time: 0 Render date: 2025-06-19T11:50:48.354Z Has data issue: false hasContentIssue false

Inquisitive split and structural completeness

Published online by Cambridge University Press:  29 May 2025

Thomas Ferguson
Affiliation:
Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, NY, USA
Vít Punčochář*
Affiliation:
Institute of Philosophy, Czech Academy of Sciences, 11000 Prague, Czechia
*
Corresponding author: Vít Punčochář; Email: puncochar@flu.cas.cz

Abstract

In this paper, the notion of structural completeness is explored in the context of a generalized class of superintuitionistic logics that also involve systems that are not closed under uniform substitution. We just require that each logic must be closed under $D$-substitutions assigning to atomic formulas only $\vee$-free formulas. For these systems, we introduce four different notions of structural completeness and study how they are related. We focus on superintuitionistic inquisitive logics that validate a schema called Split and have the disjunction property. In these logics, disjunction can be interpreted in the sense of inquisitive semantics as a question-forming operator. It is shown that a logic is structurally complete with respect to $D$-substitutions if and only if it validates Split. Various consequences of this result are explored. For example, it is shown that every superintuitionistic inquisitive logic can be characterized by a Kripke model built from $D$-substitutions. We also formulate an algebraic counterpart of this result that says that the Lindenbaum–Tarski algebra ${\mathscr{H}}$ of any inquisitive logic can be embedded into the Heyting algebra formed from left ideals of endomorphisms on ${\mathscr{H}}$. Additionally, we resolve a conjecture concerning superintuitionistic inquisitive logics due to Miglioli et al. and show that a false conjecture about superintuitionistic logics due to Minari and Wroński becomes true in the broader space of regular generalized superintuitionistic logics.

Type
Special issue: WoLLIC 2023
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bezhanishvili, N., Grilletti, G. and Holliday, W. (2019). Algebraic and topological semantics for inquisitive logic via choice-free duality. In: Iemhoff, R., Moortgat, M. and de Queiroz, R., (eds.) Logic, Language, Information, and Computation. WoLLIC 2019, vol. 11541, Springer, 3552.10.1007/978-3-662-59533-6_3CrossRefGoogle Scholar
Ciardelli, I. (2009). Inquisitive semantics and intermediate logics. Master’s thesis, University of Amsterdam, Amsterdam.Google Scholar
Ciardelli, I. (2016). Questions in logic. PhD thesis, University of Amsterdam, Amsterdam.Google Scholar
Ciardelli, I., Groenendijk, J. and Roelofsen, F. (2019). Inquisitive Semantics, Oxford: Oxford University Press.Google Scholar
Ciardelli, I., Iemhoff, R. and Yang, F. (2020). Questions and dependency in intuitionistic logic. Notre Dame Journal of Formal Logic 61 (1) 75115.10.1215/00294527-2019-0033CrossRefGoogle Scholar
Ciardelli, I. and Roelofsen, F. (2011). Inquisitive logic. Journal of Philosophical Logic 40 (1) 5594.10.1007/s10992-010-9142-6CrossRefGoogle Scholar
Ciardelli, I. and Roelofsen, F. (2015). Inquisitive dynamic epistemic logic. Synthese 192 (6) 16431687.10.1007/s11229-014-0404-7CrossRefGoogle Scholar
Cintula, P. and Metcalfe, G. (2009). Structural completeness in fuzzy logics. Notre Dame Journal of Formal Logic 50 (2) 153182.10.1215/00294527-2009-004CrossRefGoogle Scholar
Citkin, A. I. (1978). On structurally complete superintuitionistic logics. Soviet Mathematics Doklady 19 816819.Google Scholar
Citkin, A. I. (2018). Hereditarily structurally complete superintuitionistic deductive systems. Studia Logica 106 827856.10.1007/s11225-017-9769-1CrossRefGoogle Scholar
Dummett, M. (1959). A propositional calculus with denumerable matrix. The Journal of Symbolic Logic 24 97106.10.2307/2964753CrossRefGoogle Scholar
Dzik, D. and Wroński, A. (1973). Structural completeness of Gödel’s and Dummett’s propositional calculi. Studia Logica 32 6973.10.1007/BF02123815CrossRefGoogle Scholar
Ferguson, T. and Punčochář, V. (2023). Structural completeness and superintuitionistic inquisitive logics. In: Hansen, H., Scedrov, A. and de Queiroz, R. (eds.) Logic, Language, Information, and Computation. WoLLIC 2023, vol. 13923, Springer, 194210.10.1007/978-3-031-39784-4_12CrossRefGoogle Scholar
Frittella, S., Greco, G., Palmigiano, A. and Yang, F. (2016). A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, r. and de Queiroz, R., Logic, Language, Information, and Computation. WoLLIC, vol. 9803, Springer, 215233, 2016 10.1007/978-3-662-52921-8_14CrossRefGoogle Scholar
Gödel, K. (1932) Zum intuitionistischen aussagenkalkül, Anzeiger der Akademie der Wissenschaften in Wien, vol. 69, pp. 6566.Google Scholar
Grillet, P. (1995). Semigroups: An Introduction to the Structure Theory, New York: Marcel Dekker.Google Scholar
Grilletti, G. (2022). Medvedev logic is the logic of finite distributive lattices without top element. In: Fernández-Duque, D., Palmigiano, A. and Pinchinat, S. (eds.) AiML 2022, Advances in Modal Logic, vol. 14, College Publications, 451--466.Google Scholar
Holliday, W. H. (2022). Inquisitive intuitionistic logic. In: Fernández-Duque, D., Palmigiano, A. and Pinchinat, S. (eds.) AiML. 2022, Advances in Modal Logic, vol. 14, College Publications, 329348.Google Scholar
Iemhoff, R. (2016). Consequence relations and admissible rules. Journal of Philosophical Logic 45 327348.10.1007/s10992-015-9380-8CrossRefGoogle Scholar
Iemhoff, R. and Yang, F. (2016). Structural completeness in propositional logics of dependence. Archive for Mathematical Logic 55 955975.10.1007/s00153-016-0505-8CrossRefGoogle Scholar
Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. In: Dummett, M. A. E. and Crossley, J. N. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 40, Elsevier, 92130.Google Scholar
Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S. and Usberti, G. (1989). Some results on intermediate constructive logics. Notre Dame Journal of Formal Logic 30 (4) 543562.10.1305/ndjfl/1093635238CrossRefGoogle Scholar
Minari, P. and Wroński, A. (1988). The property (HD) in intermediate logics: a partial solution of a problem of H. Ono. Reports on Mathematical Logic 22 2125.Google Scholar
Olson, J., Raftery, J. G. and van Alten, C. J. (2008). Structural completeness in substructural logics. Logic Journal of the IGPL 16 (5) 455495.10.1093/jigpal/jzn014CrossRefGoogle Scholar
Pogorzelski, W. A. (1971). Structural completeness of the propositional calculus. Bulletin de l’Académie polonaise des sciences. Série Des Sciences Mathématiques 19 349351.Google Scholar
Prucnal, T. (1973). On the structural completeness of some pure implicational propositional calculi. Studia Logica 32 (1) 4550.10.1007/BF02123821CrossRefGoogle Scholar
Punčochář, V. (2015). Weak negation in inquisitive semantics. Journal of Logic, Language and Information 23 (3) 4759.Google Scholar
Punčochář, V. (2016). A generalization of inquisitive semantics. Journal of Philosophical Logic 45 (4) 399428.10.1007/s10992-015-9379-1CrossRefGoogle Scholar
Punčochář, V. (2017). Algebras of information states. Journal of Logic and Computation 27 16431675.Google Scholar
Punčochář, V. (2019). Substructural inquisitive logics. The Review of Symbolic Logic 12 (2) 296330.10.1017/S1755020319000017CrossRefGoogle Scholar
Punčochář, V. (2021). Inquisitive Heyting algebras. Studia Logica 109 (5) 9951017.10.1007/s11225-020-09936-9CrossRefGoogle Scholar
Punčochář, V. and Pezlar, I. (2024). Informative presupposition in inquisitive logic. In: Ciabattoni, A., Gabelaia, D. and Sedlár, I. (eds.) AiML. 2024, Advances in Modal Logic, vol. 15, College Publications, 609--630.Google Scholar
Punčochář, V. and Sedlár, I. (2021). Inquisitive propositional dynamic logic. Journal of Logic, Language and Information 30 (1) 91116.10.1007/s10849-020-09326-3CrossRefGoogle Scholar
Quadrellaro, D. E. (2022). On intermediate inquisitive and dependence logics: an algebraic study. Annals of Pure and Applied Logic 173 103143.10.1016/j.apal.2022.103143CrossRefGoogle Scholar
Roelofsen, F. (2013). Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190 (S1) 79102.10.1007/s11229-013-0282-4CrossRefGoogle Scholar
Sano, K. (2022). Goldblatt-Thomason-style characterization for intuitionistic inquisitive logic. In: Fernández-Duque, D., Palmigiano, A. and Pinchinat, S. (eds.) AiML. 2022, Advances in Modal Logic, vol. 14, College Publications, 541560.Google Scholar
Stafford, W. (2021). Proof-theoretic semantics and inquisitive logic. Journal of Philosophical Logic 50 (5) 11991229.10.1007/s10992-021-09596-7CrossRefGoogle Scholar
van Gessel, T. (2020). Action models in inquisitive logic. Synthese 197 (9) 39053945.10.1007/s11229-018-1886-5CrossRefGoogle Scholar
van Gessel, T. (2022). Questions in two-dimensional logic. The Review of Symbolic Logic 15 (4) 859879.10.1017/S1755020321000186CrossRefGoogle Scholar
Wojtylak, P. (2004). On a problem of H. Friedman and its solution by T. Prucnal. Reports on Mathematical Logic 38 6986.Google Scholar