Baxter, G. (1960). An analytic problem whose solution follows from a simple algebraic identity. Pacific Journal of Mathematics 10 (3) 731–742.
Bierman, G. (1995). What is a categorical model of intuitionistic linear logic? Typed Lambda Calculi and Applications, Volume 902 of Lecture Notes in Computer Science, Springer Verlag, 78–93.
Blute, R., Cockett, J., Porter, T. and Seely, R. (2011). Kähler categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 52 (4) 253–268.
Blute, R., Cockett, J. and Seely, R. (2015a). Cartesian differential storage categories. Theory and Applications of Categories 30 (18) 620–686.
Blute, R., Cockett, J.R.B. and Seely, R. (2009). Cartesian differential categories. Theory and Applications of Categories 22 (23) 622–672.
Blute, R., Ehrhard, T. and Tasson, C. (2010). A convenient differential category. Cahiers de Topologie Géométrie Différentielle Catéroqiue, 53 (2012) 211–233.
Blute, R., Lucyshyn-Wright, R.B. and O'Neill, K. (2015b). Derivations in codifferential categories. Cahiers de Topologie Géométrie Différentielle Catéroqiue, 57 (2016) 243–280.
Blute, R.F., Cockett, J.R.B. and Seely, R.A. (2006). Differential categories. Mathematical Sructures in Computer Science 16 (06) 1049–1083.
Bott, R. and Tu, L.W. (2013). Differential Forms in Algebraic Topology, vol. 82, Springer Science & Business Media.
Cockett, J., Cruttwell, G. and Gallagher, J. (2011). Differential restriction categories. Theory and Applications of Categories 25 (21) 537–613.
Cockett, J.R.B. and Cruttwell, G.S. (2014). Differential structure, tangent structure, and sdg. Applied Categorical Structures 22 (2) 331–417.
Cockett, J.R.B. and Lemay, J.S. (2017). There is only one notion of differentiation. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 84, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Ehrhard, T. (2017). An introduction to differential linear logic: Proof-nets, models and antiderivatives. Mathematical Structures in Computer Science 1–66.
Ehrhard, T. and Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science 309 (1) 1–41.
Ehrhard, T. and Regnier, L. (2006). Differential interaction nets. Theoretical Computer Science 364 (2) 166–195.
Fiore, M.P. (2007). Differential structure in models of multiplicative biadditive intuitionistic linear logic. In: International Conference on Typed Lambda Calculi and Applications, Springer, 163–177.
Golan, J.S. (2013). Semirings and their Applications, Springer Science & Business Media.
Guo, L. (2012). An Introduction to Rota–Baxter Algebra, vol. 2, International Press Somerville.
Guo, L. and Keigher, W. (2008). On differential Rota–Baxter algebras. Journal of Pure and Applied Algebra 212 (3) 522–540.
Joyal, A. and Street, R. (1991). The geometry of tensor calculus, I. Advances in Mathematics 88 (1) 55–112.
Laird, J., Manzonetto, G. and McCusker, G. (2013). Constructing differential categories and deconstructing categories of games. Information and Computation 222 247–264.
Lang, S. (2002). Algebra, revised 3rd ed. Graduate Texts in Mathematics, vol. 211, Springer-Verlag.
Mac Lane, S. (2013). Categories for the Working Mathematician, vol. 5, Springer Science & Business Media, Springer-Verlag.
Rota, G.C. (1969). Baxter algebras and combinatorial identities. I. Bulletin of the American Mathematical Society 75 (2) 325–329.
Selinger, P. (2010). A survey of graphical languages for monoidal categories. In: New Structures for Physics, Coecke, Bob (Ed.), Springer, 289–355.
Weibel, C.A. (1995). An Introduction to Homological Algebra, Cambridge University Press.
Zhang, S., Guo, L. and Keigher, W. (2016). Monads and distributive laws for Rota–Baxter and differential algebras. Advances in Applied Mathematics 72, 139–165.