Skip to main content

Iterative algebras at work


Iterative theories, which were introduced by Calvin Elgot, formalise potentially infinite computations as unique solutions of recursive equations. One of the main results of Elgot and his coauthors is a description of a free iterative theory as the theory of all rational trees. Their algebraic proof of this fact is extremely complicated. In our paper we show that by starting with ‘iterative algebras’, that is, algebras admitting a unique solution of all systems of flat recursive equations, a free iterative theory is obtained as the theory of free iterative algebras. The (coalgebraic) proof we present is dramatically simpler than the original algebraic one. Despite this, our result is much more general: we describe a free iterative theory on any finitary endofunctor of every locally presentable category $\cal{A}$.

Reportedly, a blow from the welterweight boxer Norman Selby, also known as Kid McCoy, left one victim proclaiming,

It's the real McCoy!’.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed