Skip to main content Accessibility help

Kolmogorov complexity and the geometry of Brownian motion



In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov–Chaitin random reals (complex oscillations). We unfold Kolmogorov–Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.



Hide All
Asarin, E. A. (1988) Individual random signals: An approach based on complexity, doctoral dissertation, Moscow State University.
Asarin, E. A. and Prokovskii, A. V. (1986) Use of the Kolmogorov complexity in analysing control system dynamics. Automation Remote Control 47 2128. (Translated from: Primeenenie kolmogorovskoi slozhnosti k anlizu dinamiki upravlemykh sistem. Automatika i Telemekhanika (Automation Remote Control) 1 (1986) 25–33.)
Camia, F., Fontes, L. R. G. and Newman, C. M. (2005) The scaling limit geometry of near-critical 2D percolation, available at arXiv:cond-mat/0510740v1.
Chaitin, G. A. (1987) Algorithmic Information Theory, Cambridge University Press.
Davie, G. and Fouché, W. L. (2013) On the computability of a construction of Brownian motion. Mathematical Structures in Computer Science 23 12571265. doi:10.1017/S0960129513000157.
Fontes, L. R. G., Isopi, M., Newman, C. M. and Ravishankar, K. (2003) The Brownian web: Characterisation and convergence, available at arXiv:math.PR/0304119v1.
Fouché, W. L. (2000a) Arithmetical representations of Brownian motion I. Journal of Symbolic Logic 65 421442.
Fouché, W. L. (2000b) The descriptive complexity of Brownian motion. Advances in Mathematics 155 317343.
Fouché, W. L. (2008) Dynamics of a generic Brownian motion: Recursive aspects. In: From Gödel to Einstein: Computability between Logic and Physics, Theoretical Computer Science 394 175186.
Fouché, W. L. (2009) Fractals generated by algorithmically random Brownian motion. In: Ambos-Spies, K., Löwe, B. and Merkle, W. (eds.) CiE 2009, Lecture Notes in Computer Science 5635 208217.
Gács, P. (2005) Uniform test of algorithmic randomness over a general space. Theoretical Computer Science 341 91137.
Hinman, P. G. (1978) Recursion-Theoretic Hierarchies, Springer-Verlag, New York.
Hoyrup, M. and Rojas, C. (2009) Computability of probability measures and Martin-Löf randomness over metric spaces. Information and Computation 207 830847.
Kechris, A. S. (1999) New directions in descriptive set theory. Bulletin of Symbolic Logic 5 161174.
Kjos-Hanssen, B. and Nerode, A. (2009) Effective dimension of points visited by Brownian motion. Theoretical Computer Science 410 347354.
Kjos-Hanssen, B. and Szabados, T. (2011) Kolmogorov complexity and strong approximation of Brownian motion. Proceedings of the American Mathematical Society 139 33073316.
Manin, Y. I. (2010) A Course in Mathematical Logic for Mathematicians, Springer-Verlag.
Martin-Löf, P. (1966) The definition of random sequences. Information and Control 9 602619.
Nies, A. (2008) Computability and Randomness, Oxford Logic Guides volume 51 Clarendon Press, Oxford.
Peres, Y. (2001) An Invitation to Sample Paths of Brownian Motion, available at
Potgieter, P. (2012) The rapid points of a complex oscillation. Logical Methods in Computer Science 1 111.
Rudin, W. (1960) Fourier Analysis on Groups, Interscience Publishers, New York - London.
Tsirelson, B. (2004) Nonclassical stochastic flows and continuous products. Probability Surveys 1 173298.
Tsirelson, B. (2006) Brownian local minima, random dense countable sets and random equivalence classes. Electronic Journal of Probability 11 162198.
Weihrauch, K (1999) Computability on the probability measures on the Borel sets of the unit interval. Theoretical Computer Science 219 421437.
Weihrauch, K (2000) Computable Analysis, Springer, Berlin.

Related content

Powered by UNSILO

Kolmogorov complexity and the geometry of Brownian motion



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.