Bachelard, G. (1934) Le nouvel esprit scientifique. (English translation: Goldhammer, A. (1985) *The New Scientific Spirit*, Beacon Press.)

Bachelard, G. (1940) La Philosophy du Non. Pour une philosophie du nouvel esprit scientifique, Presses Universitaires de France.

Balcázar, J. L. and Hermo, M. (1998) The structure of logarithmic advice complexity classes. Theoretical Computer Science 207 (1)217–244.

Balcázar, J. L., Días, J. and Gabarró, J. (1988) Structural Complexity I, Springer-Verlag (2nd Edition 1995).

Balcázar, J. L., Días, J. and Gabarró, J. (1990) Structural Complexity II, Springer-Verlag.

Beggs, E. and Tucker, J. V. (2006) Embedding infinitely parallel computation in Newtonian kinematics. Applied Mathematics and Computation 178 (1)25–43.

Beggs, E. and Tucker, J. V. (2007a) Can Newtonian systems, bounded in space, time, mass and energy compute all functions? Theoretical Computer Science 371 (1)4–19.

Beggs, E. and Tucker, J. V. (2007b) Experimental computation of real numbers by Newtonian machines. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences) 463 (2082) 1541–1561.

Beggs, E. and Tucker, J. V. (2008) Programming experimental procedures for Newtonian kinematic machines. In: Beckmann, A., Dimitracopoulos, C. and Löwe, B. (eds.) Proceedings of the 4th conference on Computability in Europe: Logic and Theory of Algorithms. Springer-Verlag Lecture Notes in Computer Science 5028 52–66.

Beggs, E., Costa, J. F., Loff, B. and Tucker, J. V. (2008a) On the Complexity of Measurement in Classical Physics. Theory and Applications of Models of Computation (TAMC 2008), Xi'an, China. Springer-Verlag Lecture Notes in Computer Science 4978 20–30.

Beggs, E., Costa, J. F., Loff, B. and Tucker, J. V. (2008b) Computational complexity with experiments as oracles. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences) 464 (2098) 2777–2801.

Beggs, E., Costa, J. F., Loff, B. and Tucker, J. V. (2008c) Oracles and Advice as Measurements. In: Calude, C. S., Costa, J. F., Freund, R., Oswald, M. and Rozenberg, G. (eds.) Proceedings UC 2008 – 7th International Conference on Unconventional Computation. Springer-Verlag Lecture Notes in Computer Science 5204 33–50.

Beggs, E., Costa, J. F., Loff, B. and Tucker, J. V. (2009a) Computational complexity with experiments as oracles II. Upper bounds. Proceedings of the Royal Society, Series A (Mathematical, Physical and Engineering Sciences) 465 (2105) 1453–1465.

Beggs, E., Costa, J. F. and Tucker, J. V. (2009b) Unifying science through computation: Reflections on computability and physics. New Approaches to the Unity of Science, Vol. II: Special Sciences and the Unity of Science – Logic, Epistemology, and the Unity of Science, Springer-Verlag (in press).

Beggs, E., Costa, J. F. and Tucker, J. V. (2009c) Comparing complexity classes relative to physical oracles (technical report).

Beggs, E., Costa, J. F. and Tucker, J. V. (2009d) Computational Models of Measurement and Hempel's Axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity and Embodied Cognition. Theory and Decision Library A **46**, Springer-Verlag 155–184.

Beggs, E., Costa, J. F. and Tucker, J. V. (2009e) The impact of limits of computation on a physical experiment (technical report).

Beggs, E., Costa, J. F. and Tucker, J. V. (2010) Physical oracles: The Turing machine and the Wheatstone bridge. In: Aerts, D., Smets, S. and Van Bendegem, J. P. (eds.) The contributions of Logic to the Foundations of Physics. Studia Logica 95 217–292.

Bournez, O. and Cosnard, M. (1996) On the computational power of dynamical systems and hybrid systems. Theoretical Computer Science 168 (2)417–459.

Brady, A. H. (1994) The busy beaver game and the meaning of life. In: Herken, R. (ed.) The Universal Turing Machine: A Half-Century Survey, 2nd Edition, Springer-Verlag 237–254.

Cooper, S. B. (2004) Computability Theory, Chapman and Hall.

Eddington, A. S. (1933) The Expanding Universe, Cambridge University Press.

Froda, A. (1959) La finitude en mécanique classique, ses axiomes et leurs implications. In: Henkin, L., Suppes, P. and Tarski, A. (eds.) The Axiomatic Method, with Special Reference to Geometry and Physics, Studies in Logic and the Foundations of Mathematics, North-Holland.

Hamming, R. W. (1989) Digital Filters, (2nd Edition)Prentice-Hall.

Hempel, C. G. (1952) Fundamentals of Concept Formation in Empirical Science. International Encyclopedia of Unified Science, 2 (7) University of Chicago Press.

Krantz, D. H., Suppes, P., Luce, R. D. and Tversky, A. (2009) Foundations of Measurement, Dover.

Popper, K. R. (1950) Indeterminism in quantum physics and in classical physics. The British Journal for the Philosophy of Science 1 (2)117–133.

Popper, K. R. (1950) Indeterminism in quantum physics and in classical physics (Part II). The British Journal for the Philosophy of Science 1 (3)173–195.

Radó, T. (1962) On non-computable functions. Bell System Tech. J. 41 (3)877–884.

Siegelmann, H. (1999) Neural Networks and Analog Computation: Beyond the Turing Limit, Birkhäuser.

Ziegler, M. (2009) Physically-relativized Church–Turing Hypotheses: Physical foundations of computing and complexity theory of computational physics. Applied Mathematics and Computation 215 (4)1431–1447.