Ambos-Spies, K. (1987). Minimal pairs for polynomial time reducibilities. In: Computation Theory and Logic. Springer Lecture Notes in Computer Science
270
1–13.

Bauer, A. (1998). Topology and computability. Thesis proposal (for Bauer (2000)), Carniege Mellon University.

Bauer, A. (2000). *The Realizability Approach to Computable Analysis and Topology*. PhD thesis, Carnegie Mellon University.

Bauer, A. (2004). Realizability as the connection between computable and constructive mathematics. Tutorial at CCA 2004 (notes).

Beame, P., Cook, S., Edmonds, J., Impagliazzo, R. and Pitassi, T. (1998). The relative complexity of NP search problems. Journal of Computer and System Science
57
3–19.

Bellare, M. and Goldwasser, S. (1994) The complexity of decision versus search. SIAM Journal on Computing
23
97–119.

Blass, A. (1995). Questions and answers – a category arising in linear logic, complexity theory, and set theory. In: Girard, J. Y., Lafont, Y., and Regnier, L. (eds.) Advances in Linear Logic, London Mathematical Society Lecture Note Series, Cambridge University Press, volume 222, 61–81. arXiv:math/9309208.

Borodin, A., Constable, R. L. and Hopcroft, J. E. (1969). Dense and non-dense families of complexity classes. In: *Proceedings of the 10th Annual Symposium on Switching and Automata Theory* 7–19.

Brattka, V., de Brecht, M. and Pauly, A. (2012a). Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic
163
(8)
968–1008.

Brattka, V. and Gherardi, G. (2011a). Effective choice and boundedness principles in computable analysis. Bulletin of Symbolic Logic
1
73–117 arXiv:0905.4685.

Brattka, V. and Gherardi, G. (2011b). Weihrauch degrees, omniscience principles and weak computability. Journal of Symbolic Logic
76
143–176 arXiv:0905.4679.

Brattka, V., Gherardi, G. and Hölzl, R. (2015). Probabilistic computability and choice. Information and Computation
242, 249–286.

Brattka, V., Gherardi, G. and Marcone, A. (2012b). The Bolzano-Weierstrass Theorem is the jump of Weak König's Lemma. Annals of Pure and Applied Logic
163
(6)
623–625 also arXiv:1101.0792.

Brattka, V. and Hertling, P. (1994). Continuity and computability of relations. Informatik Berichte 164, FernUniversität Hagen.

Brattka, V., LeRoux, S. and Pauly, A. (2012c). On the computational content of the Brouwer fixed point theorem. In: Barry Cooper, S., Dawar, A. and Löwe, B. (eds.) How the World Computes, Lecture Notes in Computer Science volume 7318, 56–67.

Brattka, V. and Pauly, A. On the algebraic structure of Weihrauch degrees. forthcoming.

Brattka, V. and Pauly, A. (2010). Computation with advice. Electronic Proceedings in Theoretical Computer Science
24 CCA 2010.

Chen, X. and Deng, X. (2005). Settling the complexity of 2-player Nash-equilibrium. Technical Report 134, Electronic Colloquium on Computational Complexity.

Cockett, J. R. B. and Hofstra, P. J. W. (2008). Introduction to Turing categories. Annals of Pure and Applied Logic
156 (2–3) 183–209.

Cockett, J. R. B. and Lack, S. (2002). Restriction categories I: Categories of partial maps. Theoretical Computer Science
270
(1–2)
223–259.

Cockett, J. R. B. and Lack, S. (2003). Restriction categories II: Partial map classification. Theoretical Computer Science
294
(1–2)
61–102. Category Theory and Computer Science.

Cockett, R. and Garner, R. (2014). Restriction Categories As Enriched Categories. Theoretical Computer Science, 523, 37–55.

Cockett, R. and Lack, S. (2007). Restriction categories III: Colimits, partial limits and extensivity. Mathematical Structures in Computer Science
17
775–817.

dePaiva, V. (1989). A Dialectica-like model of linear logic. In: Pitt, D.
et al. (ed.) Categories in Computer Science and Logic. Springer Lecture Notes in Computer Science
389.

Daskalakis, C. and Papadimitriou, C. (2011). Continuous local search. In: *Proceedings of SODA* 790–804.

DiPaola, R. and Heller, A. (1987). Dominical categories: Recursion theory without elements. Journal of Symbolic Logic
52
594–635.

Dorais, F. G., Dzhafarov, D. D., Hirst, J. L., Mileti, J. R. and Shafer, P. On uniform relationships between combinatorial problems. *Transactions of the AMS*, to appear. arXiv 1212.0157.

Downey, R. and Fellows, M. (1999). Parameterized Complexity, Springer.

Etessami, K. and Yannakakis, M. (2007). On the complexity of Nash equilibria and other fixed points (extended abstract). In: *Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science* 113–123.

Fabrikant, A., Papadimitriou, C. and Talwar, K. (2004). The complexity of pure Nash equilibria. In: *STOC '04: Proceedings of the 36th Annual ACM Symposium on Theory of Computing* 604–612.

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory, Springer.

Gherardi, G. and Marcone, A. (2009). How incomputable is the separable Hahn-Banach theorem. Notre Dame Journal of Formal Logic
50
(4)
393–425.

Gottlob, G. (2005). Computing cores for data exchange: New algorithms and practical solutions. In: *PODS* 148–159.

Higuchi, K. and Pauly, A. (2013). The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science
9
(2).

Hoyrup, M., Rojas, C. and Weihrauch, K. (2012). Computability of the Radon-Nikodym derivative. Computability
1
(1)
3–13.

Johnson, D. S., Papadimtriou, C. H. and Yannakakis, M. (1988). How easy is local search. Journal of Computer and System Sciences
37
(1)
79–100.

Jurdzinski, M., Paterson, M. and Zwick, U. (2008). A deterministic subexponential algorithm for solving parity games. SIAM J. Comput.
38
(4)
1519–1532.

Karp, R. M. (1972). Reducibility among combinatorial problems. In: Miller, R. E. and Thatcher, J. W. (eds.) Complexity of Computer Computations, Plenum
85–103.

Kawamura, A. and Cook, S. (2012). Complexity theory for operators in analysis. ACM Transactions on Computation Theory
4 (2).

Kawamura, A. and Pauly, A. (2014a). Function spaces for second-order polynomial time. In: Beckmann, A., Csuhaj-Varjú, E. and Meer, K. (eds.) Language, Life, Limits, Lecture Notes in Computer Science volume 8493, 245–254.

Kawamura, A. and Pauly, A. (2014b). Function spaces for second-order polynomial time. arXiv 1401.2861.

Kozen, D. (1990). On Kleene algebras and closed semirings. In. *Proceedings of the Mathematical Foundations of Computer Science*. Springer Lecture Notes in Computer Science
452.

Ladner, R. E. (1975). On the structure of polynomial time reducibility. Journal of the ACM
22
(1)
155–171.

Longo, G. and Moggi, E. (1984). Cartesian closed categories of enumerations and effective type structures. In: Khan, P. and MacQueen, , (eds.) Symposium on Semantics of Data Types. Springer Lecture Notes in Computer Science
173.

Medvedev, Y. T. (1955). Degrees of difficulty of mass problems. Doklady Akademii Nauk SSSR
104
501–504.

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and Systems Science
48
(3)
498–532.

Pauly, A. (2010a). How incomputable is finding Nash equilibria. Journal of Universal Computer Science
16
(18)
2686–2710.

Pauly, A. (2010b). On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly
56
(5)
488–502.

Pauly, A. (2012a). Multi-valued functions in computability theory. In: Cooper, S., Dawar, A. and Löwe, B. (eds.) How the World Computes, Lecture Notes in Computer Science volume 7318, 571–580.

Pauly, A. and Ziegler, M. (2013). Relative computability and uniform continuity of relations. Journal of Logic and Analysis
5
1–39.

Robinson, E. and Rosolini, G. (1988). Categories of partial maps. Information and Computation
79
(2)
95–130.

Weihrauch, K. (July 1992a). The degrees of discontinuity of some translators between representations of the real numbers. Informatik Berichte 129, FernUniversität Hagen, Hagen.

Weihrauch, K. (September 1992b). The TTE-interpretation of three hierarchies of omniscience principles. Informatik Berichte 130, FernUniversität Hagen, Hagen.

Weihrauch, K. (2000). Computable Analysis, Springer-Verlag.

Yates, C. E. M. (1966). A minimal pair of recursively enumerable degrees. The Journal of Symbolic Logic
31
(2)
159–168.

Yoshimura, K. (2014). From Weihrauch lattice to logic: Part I. unpublished notes.