Artin, M., Grothendieck, A. and Verdier, J.-L. (eds.) (1972/3). SGA4: Théorie des topos et cohomologie étale des schémas, 1963–1964. In: Lecture Notes in Mathematics 269, 270 and 305, Springer.

Awodey, S., Butz, C., Simpson, A. and Streicher, T. (2014). Relating first-order set theories, toposes and categories of classes. Annals of Pure and Applied Logic
165
(2)
428–502.

Awodey, S. and Warren, M.A. (2009). Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society
146
45–55.

Bezem, M., Coquand, T. and Huber, S. (2014). A model of type theory in cubical sets. Unpublished preprint dated 3 May 2014.

Dybjer, P. (1996). Internal type theory. LNCS
1158
120–134.

Dyckhoff, R. and Tholen, W. (1987). Exponentiable morphisms, partial products and pullback complements. JPAA
7
(49)
103–116.

Fiore, M. (2012). Discrete generalised polynomial functors. Talk given at *ICALP*.

Fu, Y. (1997). Categorical properties of logical frameworks. Mathematical Structures in Computer Science
7
1–47.

Gambino, N. and Garner, R. (2008). The identity type weak factorisation system. Theoretical Computer Science
409
(1)
94–109.

Gambino, N. and Kock, J. (2013). Polynomial functors and polynomial monads. Mathematical Proceedings of the Cambridge Philosophical Society
154
153–192.

Hofmann, M. (1994). On the interpretation of type theory in locally cartesian closed categories. In: Pacholski, L. and Tiuryn, J. (eds.) CSL, Springer
427–441.

Hofmann, M. (1997). Syntax and semantics of dependent types. In: Pitts, A.M. and Dybjer, P. (eds.) Semantics of Logics of Computation, Cambridge University Press.

Johnstone, P.T. (1992). Partial products, bagdomains and hyperlocal toposes. LMS Lecture Note Series
177
315–339.

Johnstone, P.T. (1994). Variations on the bagdomain theme. Theoretical Computer Science
136
3–20.

Joyal, A. (2014). Categorical homotopy type theory. Slides from a talk at MIT dated 17 March 2014.

Kapulkin, C., LeFanu Lumsdaine, P. and Voevodsky, V. (2014). The simplicial model of univalent foundations. On the arXiv as 1211.2851v2, dated 15 April 2014.

LeFanu Lumsdaine, P. and Warren, M.A. (2015). The local universes model: An overlooked coherence construction for dependent type theories. ACM Transactions on Computational Logic
16
(3) Article No. 23.

Martin-Löf, P. (1975). An intuitionistic theory of types: Predicative part. In: Rose, H.E. and Shepherdson, J.C. (eds.) Studies in Logic and the Foundations of Mathematics, Logic Colloquium '73, Volume 80, Amsterdam, North-Holland Publishing Company
73–118.

Streicher, T. (2006). Identity Types and Weak Omega-Groupoids. Talks in Uppsala at a meeting on ‘Identity Types - Topological and Categorical Structure’.

Streicher, T. (2014). Semantics of type theory formulated in terms of representability. Unpublished note dated 26 February 2014.

The Univalent Foundations Program, Institute for Advanced Study (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. Available at: http://homotopytypetheory.org/book
van den Berg, B. and Garner, R. (2012). Topological and simplicial models of identity types. ACM Transactions on Computational Logic
13
1.