Skip to main content Accessibility help

On computably locally compact Hausdorff spaces

  • YATAO XU (a1) and TANJA GRUBBA (a2)


Locally compact Hausdorff spaces generalise Euclidean spaces and metric spaces from ‘metric’ to ‘topology’. But does the effectivity on the latter (Brattka and Weihrauch 1999; Weihrauch 2000) still hold for the former? In fact, some results will be totally changed. This paper provides a complete investigation of a specific kind of space – computably locally compact Hausdorff spaces. First we characterise this type of effective space, and then study computability on closed and compact subsets of them. We use the framework of the representation approach, TTE, where continuity and computability on finite and infinite sequences of symbols are defined canonically and transferred to abstract sets by means of notations and representations.



Hide All
Brattka, V. (2003) Recursive quasi-metric spaces. Theoret. Comput. Sci. 305 1742.
Brattka, V. and Hertling, P. (1994) Continuity and computability of relations. Informatik Berichte 164, Fern University in Hagen.
Brattka, V. and Presser, G. (2003) Computability on subsets of metric spaces. Theoret. Comput. Sci. 305 4376.
Brattka, V. and Weihrauch, K. (1999) Computability on subsets of Euclidean space I: Closed and compact subsets. Theoret. Comput. Sci. 219 6593.
Collins, P. (2005) Continuity and computability on reachable sets. Theoret. Comput. Sci. 341 162195.
Engelking, R. (1989) General Topology, Heldermann, Berlin.
Grubba, T. and Weihrauch, K. (2005) A computable version of Dini's theorem for topological spaces. Springer-Verlag Lecture Notes in Computer Science 3733 927936.
Grubba, T. and Weihrauch, K. (2006) On computable metrization. In: Cenzer, D., Dillhage, R., Grubba, T. and Weihrauch, K. (eds.) Informatik Berichte 333, Fern University in Hagen 176191.
Grzegorczyk, A. (1955) Computable functions. Fund. Math. 42 168202.
Hauck, J. (1973) Berechenbare reelle funktionen. Z. math. Logik Grundlagen Math. 19 121140.
Ko, K. I. (1991) Complexity Theory of Real Functions, Birkhauser.
Kreitz, C. and Weihrauch, K. (1984) A unified approach to constructive and recursive analysis. In: Richter, M., Borger, E., Oberschelp, W., Schinzel, B. and Thomas, W. (eds.) Computation and Proof Theory. Springer-Verlag in Mathematics 1104 259278.
Kusner, B. A. (1984) Lectures on Constructive Mathematical Analysis, Translations of Mathematical Monographs Series 60, American Mathematical Society.
Lacombe, D. (1955) Extension de la notion de fonction recursive aux fonctions d'une ou plusieurs variables reelles I. Comptes Rendus Academie des Sciences Paris 240 24782480.
Mazur, S. (1963) Computable Analysis. Razprawy Matematyczne 33, Warsaw.
Pour-El, M. B. and Richards, J. I. (1989) Computability in Analysis and Physics, Perspectives in Mathematical Logic, Springer-Verlag.
Schröder, M. (1998) Effective metrization of regular spaces. In: Ko, K. I., Nerode, A., Pour-El, M. B., Weihrauch, K. and Wiedermann, J. (eds.) Informatik Berichte 235, Fern University in Hagen 6380.
Scott, D. (1970) Outline of a mathematical theory of computation, Oxford University Press.
Stoltenberg-Hansen, V. and Tucker, J. V. (1999) Concrete models of computation for topological algebras. Theoret. Comput. Sci. 219 347378.
Turing, A. M. (1936) On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42 230265.
Weihrauch, K. (1993) Computability on computable metric spaces. Theoret. Comput. Sci. 113 191210.
Weihrauch, K. (2000) Computable Analysis, Springer-Verlag.
Yasugi, M., Mori, T. and Tsujii, Y. (1999) Effective properties of sets and functions in metric spaces with computability structure. Theoret. Comput. Sci. 219 467486.
Zhong, N. and Weihrauch, K. (2003) Computability theory of generalized functions. J. Asso. for Comp. Mach 50 (4)469505.
Zhou, Q. (1996) Computable real-valued functions on recursive open and closed subsets of Euclidean space. Math. Logic Q. 42 379409.
Ziegler, M. (2002) Computability on regular subsets of Euclidean space. Math. Logic Q. 48 (Supplement 1)157181.
Ziegler, M. (2004) Computable operators on regular sets. Math. Logic Q. 50 (4-5)392404.

Related content

Powered by UNSILO

On computably locally compact Hausdorff spaces

  • YATAO XU (a1) and TANJA GRUBBA (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.