Abramsky, S., Haghverdi, E. and Scott, P.J. (2002). Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science
12
(5)
1–40.

Andreoli, J.-M. (1992). Logic programming with focusing proofs in linear logic. Journal of Logic and Computation
2
(3)
297–347.

Andreoli, J.-M. (2001). Focussing and proof construction. Annals of Pure and Applied Logic
107
(1)
131–163.

Blute, R.F. and Scott, P.J. (2004). Category theory for linear logicians. In: Ehrhard, T., Girard, J.-Y., Ruet, P., Scott, P. (eds.) Linear Logic and Computer Science, London Mathematical Society Lecture Note Series, vol. 316, C.U.P.

Chaudhuri, K. (2008). Focusing strategies in the sequent calculus of synthetic connectives. In: Logic for Programming, Artificial Intelligence and Reasoning (LPAR-15), Doha, Qatar, Lecture Notes in Computer Science, vol. 5330, Springer, 467–481.

Chaudhuri, K., Hetzl, S. and Miller, D. A. (2013). Multi-focused proof system isomorphic to expansion proofs. Journal of Logic and Computation
26
(2)
577–603.

Cockett, J.R.B., Hasegawa, M. and Seely, R.A.G. (2006). Coherence of the double involution on *-autonomous categories. TAC
17
17–29.

Cockett, J.R.B. and Seely, R.A.G. (2007). Polarized category theory, modules and game semantics. TAC
18
4–101.

Ehrhard, T. (2012). The Scott model of linear logic is the extensional collapse of its relational model. Theoretical Computer Science
424
(23)
20–45.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science
50
1–102.

Girard, J.-Y. (1989). Geometry of interaction I: Interpretation of system F. In: Ferro, R.
et al. (eds.) Logic Colloquium '88, North-Holland, 221–260.

Girard, J.-Y. (1991). A new constructive logic: Classical logic. Mathematical Structures in Computer
1
(3)
255–296.

Girard, J.-Y. (1995). Geometry of interaction III: Accommodating the additives. In: Advances in Linear Logic, Lecture Notes in Computer Science, vol. 222, CUP, 329–389.

Girard, J.-Y. (1999). On the meaning of logical rules I: Syntax vs. semantics. In Berger, U. and Schwichtenberg, H. (eds.) Computational Logic, NATO ASI Series, vol. 165, Springer, 215–272.

Girard, J.-Y. (2001). Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science
11
301–506.

Girard, J.-Y. (2011). The Blind Spot: Lectures in Logic, European Mathematical Society, 550.

Haghverdi, E. (2000). *A Categorical Approach to Linear Logic, Geometry of Proofs and Full Completeness*. PhD Thesis, University of Ottawa, Canada.

Haghverdi, E. and Scott, P. (2006). A categorical model for the geometry of interaction. Theoretical Computer Science
350
(2–3)
252–274.

Haghverdi, E. and Scott, P.J. (2010). Towards a typed geometry of interaction. Mathematical Structures in Computer Science, 20
473–521.

Haghverdi, E. and Scott, P.J. (2011). Geometry of interaction and the dynamics of proof reduction: A tutorial, new structures in physics. In: Coecke, R. (ed.) Springer Lectures Notes in Physics, vol. 813, Oxford.

Hamano, M. and Scott, P. (2007). A categorical semantics for polarized MALL. Annals of Pure & Applied Logic
145
276–313.

Hamano, M. and Takemura, R. (2008) An indexed system for multiplicative additive polarized linear logic. In: *Proceedings of 17th Annual Conference on Computer Science Logic (CSL'08)*, Lecture Notes in Computer Science, vol. 5213, 262–277.

Hamano, M. and Takemura, R. (2010). A phase semantics for polarized linear logic and second order conservativity. The Journal of Symbolic Logic
75
(1)
77–102.

Hasegawa, M. (2004). The uniformity principle on traced monoidal categories. Publications of the Research Institute for Mathematical Sciences
40
(3)
991–1014.

Hyland, J.M.E. and Schalk, A. (2003). Glueing and orthogonality for models of linear logic. Theoretical Computer Science
294
183–231.

Joyal, A., Street, R. and Verity, D. (1996). Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society
119
447–468.

Lambek, J. and Scott, P.J. (1986). Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge University Press.

Laurent, O. (1999). Polarized proof-nets: Proof-nets for LC (Extended Abstract). In: *LNCS 1581 (TLCA '99)*, 213–217.

Laurent, O. (2001). A token machine for full geometry of interaction (Extended Abstract). In: *LNCS 2044 (TLCA '01)*, 283–297.

Laurent, O. (March 2002). Étude de la polarisation en logique. (A study of polarization in logic.) Thèse de Doctorat. Institut de Mathématiques de Luminy – Université Aix-Marseille II.

Liang, C. and Miller, D. (2009). Focusing and polarization in linear, intuitionistic, and classical logic. Theoretical Computer Science
410
(46)
4747–4768.

Mac Lane, S. (1971). Categories for the Working Mathematician, Springer.

Manes, E.G. and Arbib, M.A. (1986). Algebraic Approaches to Program Semantics, Springer-Velag.

Melliès, P.-A. (2009). Categorical semantics of linear logic. Published in: ‘Interactive models of computation and program behaviour’. Pierre-Louis Curien, Hugo Herbelin, Jean-Louis Krivine, Paul-André Melliès. *Panoramas et Synthèses* 27, Société Mathématique de France.

Melliès, P.-A. (2013). Dialogue categories and frobenius monoids. In: Coecke, B., Ong, L., and Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations – The Many Facets of Samson Abramsky, Lecture Notes in Computer Science, vol. 7860, Springer, 197–224.

Miller, D. (2004). An overview of linear logic programming. In: Ehrhard, T., Girard, J.-Y., Ruet, P. and Scott, P. (eds.) Linear Logic and Computer Science, LMS Lecture Note Series, vol. 316, C.U.P., 119–150.

Simpson, A. and Plotkin, G. (2000) Complete axioms for categorical fixed-point operators. In: *Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS)*, IEEE Computer Society, 30–41.