Skip to main content
    • Aa
    • Aa

On geometry of interaction for polarized linear logic


We present Geometry of Interaction (GoI) models for Multiplicative Polarized Linear Logic, MLLP, which is the multiplicative fragment of Olivier Laurent's Polarized Linear Logic. This is done by uniformly adding multi-points to various categorical models of GoI. Multi-points are shown to play an essential role in semantically characterizing the dynamics of proof networks in polarized proof theory. For example, they permit us to characterize the key feature of polarization, focusing, as well as being fundamental to our construction of concrete polarized GoI models.

Our approach to polarized GoI involves following two independent studies, based on different categorical perspectives of GoI: (i)

Inspired by the work of Abramsky, Haghverdi and Scott, a polarized GoI situation is defined in which multi-points are added to a traced monoidal category equipped with a reflexive object U. Using this framework, categorical versions of Girard's execution formula are defined, as well as the GoI interpretation of MLLP proofs. Running the execution formula is shown to characterize the focusing property (and thus polarities) as well as the dynamics of cut elimination.


The Int construction of Joyal–Street–Verity is another fundamental categorical structure for modelling GoI. Here, we investigate it in a multi-pointed setting. Our presentation yields a compact version of Hamano–Scott's polarized categories, and thus denotational models of MLLP. These arise from a contravariant duality between monoidal categories of positive and negative objects, along with an appropriate bimodule structure (representing ‘non-focused proofs’) between them.

Finally, as a special case of (ii) above, a compact model of MLLP is also presented based on Rel (the category of sets and relations) equipped with multi-points.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 20 *
Loading metrics...

* Views captured on Cambridge Core between 28th September 2017 - 17th October 2017. This data will be updated every 24 hours.