Published online by Cambridge University Press: 27 October 2011
Given a program, a quotient can be obtained from it by deleting zero or more statements. The field of program slicing is concerned with computing a quotient of a program that preserves part of the behaviour of the original program. All program slicing algorithms take account of the structural properties of a program, such as control dependence and data dependence, rather than the semantics of its functions and predicates, and thus work, in effect, with program schemas. The dynamic slicing criterion of Korel and Laski requires only that program behaviour is preserved in cases where the original program follows a particular path, and that the slice/quotient follows this path. In this paper we formalise Korel and Laski's definition of a dynamic slice as applied to linear schemas, and also formulate a less restrictive definition in which the path through the original program need not be preserved by the slice. The less restrictive definition has the benefit of leading to smaller slices. For both definitions, we compute complexity bounds for the problems of establishing whether a given slice of a linear schema is a dynamic slice and whether a linear schema has a non-trivial dynamic slice, and prove that the latter problem is NP-hard in both cases. We also give an example to prove that minimal dynamic slices (whether or not they preserve the original path) need not be unique.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.