Hostname: page-component-76c49bb84f-229nc Total loading time: 0 Render date: 2025-07-04T05:50:47.098Z Has data issue: false hasContentIssue false

Principal types as partial involutions

Published online by Cambridge University Press:  08 April 2025

Furio Honsell*
Affiliation:
Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
Marina Lenisa
Affiliation:
Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
Ivan Scagnetto
Affiliation:
Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
*
Corresponding author: Furio Honsell; Email: furio.honsell@gmail.com

Abstract

We show that the principal types of the closed terms of the affine fragment of λ-calculus, with respect to a simple type discipline, are structurally isomorphic to their interpretations, as partial involutions, in a natural Geometry of Interaction model à la Abramsky. This permits to explain in elementary terms the somewhat awkward notion of linear application arising in Geometry of Interaction, simply as the resolution between principal types using an alternate unification algorithm. As a consequence, we provide an answer, for the purely affine fragment, to the open problem raised by Abramsky of characterizing those partial involutions which are denotations of combinatory terms.

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramsky, S. (1996). Retracing Some Paths in Process Algebra. In: Montanari, U. and Sassone, V. (eds.) CONCUR’96 Conference Proceedings, Springer. Lecture Notes in Computer Science 1119 117.Google Scholar
Abramsky, S. (1997). Interaction, combinators and complexity. Lecture Notes. Siena, Italy (handwritten notes). Google Scholar
Abramsky, S. (2005). A structural approach to reversible computation. Theoretical Computer Science 347 (3) 441464.CrossRefGoogle Scholar
Abramsky, S., Haghverdi, E. and Scott, P. (2002). Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12 (5) 625665.CrossRefGoogle Scholar
Abramsky, S. and Jagadeesan, R. (1994). Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59 (2) 543574.CrossRefGoogle Scholar
Abramsky, S. and Jagadeesan, R. (1994). New foundations for the geometry of interaction. Information and Computation 111 (1) 53119.Google Scholar
Abramsky, S. and Lenisa, M. (2001). Fully Complete Minimal PER Models for the Simply Typed Lambda-calculus. In: Fribourg, L. (ed.) CSL’2001 Conference Proceedings, Springer. Lecture Notes in Computer Science 2142 443457.Google Scholar
Abramsky, S. and Lenisa, M. (2005). Linear realizability and full completeness for typed lambda-calculi. Annals of Pure and Applied Logic 134 (2-3) 122168.CrossRefGoogle Scholar
Abramsky, S. and Longley, J. (2000). Realizability models based on history-free strategies. Draft manuscriptGoogle Scholar
Baillot, P. and Pedicini, M. (2001). Elementary complexity and geometry of interaction. Fundamenta Informaticae 45 (1-2) 131.Google Scholar
Barendregt, H. (1984) The lambda calculus, Studies in Logic, vol.103, North-Holland.Google Scholar
Ciaffaglione, A., Di Gianantonio, P., Honsell, F., Lenisa, M. and Scagnetto, I. (2019). Reversible computation and principal types in λ!-calculus. The Bulletin of Symbolic Logic 25 (2) 931940.Google Scholar
Ciaffaglione, A., Di Gianantonio, P., Honsell, F., Lenisa, M. and Scagnetto, I. (2019a). λ!-calculus, intersection types, and involutions. In: Geuvers, H. (ed.) Formal Structures for Computation and Deduction (FSCD 2019), vol.131, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1–16.Google Scholar
Ciaffaglione, A., Honsell, F., Lenisa, M. and Scagnetto, I. (2018). The Involutions-as-principal type/application-as-unification Analogy. In: Barthe, G., Sutcliffe, G., and Veanes, M. (eds.) 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2018), EasyChair, 254270.Google Scholar
Coppo, M., Dezani-Ciancaglini, M., Honsell, F. and Longo, G. (1984).Extended type structures and filter lambda models. Logic Colloquium 112 241262.Google Scholar
Danos, V., Herbelin, H. and Regnier, L. (1996). Game Semantics & Abstract Machines. In: Proceedings of the Eleventh International Symposium on Logic in Computer Science (LICS 1996), New York: IEEE Press, 394405 Google Scholar
Danos, V. and Regnier, L. (1993). Local and asynchronous beta-reduction. In: Proceedings of the Eighth International Symposium on Logic in Computer Science (LICS 1993), New York: IEEE Press, 296306 Google Scholar
Di Gianantonio, P. and Lenisa, M. (2022) Principal Types as Lambda Nets. In: Basold, H., Cockx, J., and Ghilezan, S. (eds.) Types for Proofs and Programs (TYPES 2021), vol. 239. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1–23.Google Scholar
Girard, J.-Y. (1989). Geometry of interaction I: interpretation of system F, Logic Colloquium ’88. In: Ferro, R. et al., (ed.), Amsterdam, North-Holland, 221260.Google Scholar
Girard, J.-Y. (1990) Geometry of interaction II: deadlock-free algorithms, COLOG-88: International Conference on Computer Logic. In: Martin-Lof, P. et al., (eds.) Berlin Heidelberg: Springer Berlin Heidelberg, 7693. Lecture Notes in Computer Science 417Google Scholar
Girard, J.-Y. (1995) Geometry of interaction III : accommodating the additives, Advances in Linear Logic, vol. 222, Cambridge University Press. London Mathematical Society Lecture Notes SeriesCrossRefGoogle Scholar
Girard, J.-Y. (1998). Light linear logic. Information and Computation 143 (2) 175204.Google Scholar
Gonthier, G., Abadi, M. and Lévy, J.-J. (1992). The Geometry of Optimal Lambda Reduction. In: Sethi, R. (ed.) Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL 1992), ACM Press, 1526.CrossRefGoogle Scholar
Hindley, J. R. (1989). BCK-combinators and linear lambda-terms have types. Theoretical Computer Science 64 (1) 97105.CrossRefGoogle Scholar
Hindley, J. R. and Seldin, J. P. (1986). Introduction to Combinators and the λ-Calculus, Cambridge, Cambridge University Press.Google Scholar
Hirokawa, S. (1993). Principal types of BCK-lambda-terms. Theoretical Computer Science 107 (2) 253276.Google Scholar
Honsell, F., Lenisa, M. and Scagnetto, I. (2020). Λ -Symsym: An Interactive Tool for Playing with Involutions and Types. In: de’Liguoro, U., Berardi, S., and Altenkirch, T. 26th International Conference on Types for Proofs and Programs, TYPES, vol. 7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,118.Google Scholar
Honsell, F., Lenisa, M. and Scagnetto, I. (2024). Two Views on Unification: Terms as Strategies. In: 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Vol. 323, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 26:1–6:15. Doi: 10.4230/LIPIcs.FSTTCS.2024.26 Google Scholar
Levy, J.-J. (1978). Réductions correctes et optimales dans le lambda-calcul. Thèse de doctorat d’état, Universit e Paris VII.Google Scholar
Mackie, I. (1995). The Geometry of Interaction Machine. In: Cytron, R. K. and Lee, P. (ed.) Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of programming languages, ACM Press, 198208. CrossRefGoogle Scholar
Mairson, H. G. (2004). Linear lambda calculus and PTIME-completeness. Journal of Functional Programming 14 (6) 623633.Google Scholar
Martelli, A. and Montanari, U. (1982). An efficient unification algorithm. ACM Transactions On Programming Languages and Systems. 4 (2) 258282.CrossRefGoogle Scholar
Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. Journal of the ACM 12 (1) 2341.Google Scholar