Skip to main content
×
×
Home

A projective formalism applied to topological and probabilistic event structures

  • SAMY ABBES (a1)
Abstract

This paper introduces projective systems for topological and probabilistic event structures. The projective formalism is used for studying the domain of configurations of a prime event structure and its space of maximal elements. This is done from both a topological and a probabilistic viewpoint. We give probability measure extension theorems in this framework.

Copyright
References
Hide All
Abbes, S. and Benveniste, A. (2006) Probabilistic true-concurrency models. Branching cells and distributed probabilities for event structures. Information and Computation 204 231274.
Abbes, S. and Keimel, K. (2006) Projective topology on bifinite domains and applications. Theoretical Computer Science 365 (3)171183.
Alvarez-Manilla, M., Edalat, A. and Saheb-Djahromi, N. (2000) An extension result for continuous valuations. Journal of London Mathematical Society 61 (2)629640.
Birkhoff, G. (1940) Lattice Theory (third edition 1967), Publications of AMS.
Bourbaki, N. (1961) Topologie Générale, Chapitre i, éléments de mathématiques, fascicule ii, Hermann.
Bourbaki, N. (1969) Intégration, Chapitre ix, éléments de mathématiques, fascicule xxxv, Hermann.
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Misolve, M. W. and Scott, D. S. (2003) Continuous Lattices and Domains, Cambridge University Press.
Horn, A. and Tarski, A. (1948) Measures in boolean algebra. Transactions of American Mathematical Society 64 (3)467497.
Jones, C. and Plotkin, G. (1989) A probabilistic powerdomain of evaluations. In: Logic in Computer Science, IEEE Computer Society Press.
Kahn, G. and Plotkin, G. (1978) Domaines concrets. Rapport de recherches 336, INRIA.
Katoen, J. P., Baier, C. and Letella, D. (2001) Metric semantics for true-concurrent real time. Theoretical Computer Science 254 (1)501542.
Keimel, K. and Lawson, J. D. (2005) Measure extension theorems on T0-spaces. Topology and Applications 149 5783.
Kwiatowska, M. Z. (1990) A metric for traces. Information Processing Letter 35 129135.
Lawson, J. D. (1982) Valuations on continuous lattices. In: Hoffmann, R.-E. (ed.) Continuous Lattices and Related Topics. Mathematik Arbeitspapiere 27, Bremen Universität 204225.
Nielsen, M., Plotkin, G. and Winskel, G. (1980) Petri nets, event structures and domains, part 1. Theoretical Computer Science 13 86108.
Norberg, T. and Vervaat, W. (1997) Capacities on non-Haussdorff spaces. In: Vervaat, W. and Holwerda, H. (eds.) Probability and lattices. CWI Tracts 110
Schwartz, L. (1973) Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Oxford University Press.
Varacca, D., Völzer, H. and Winskel, G. (2004) Probabilistic event structures and domains. In: Proceedings of CONCUR'04. Springer-Verlag Lecture Notes in Computer Science 3170 481496.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2018. This data will be updated every 24 hours.