Skip to main content
×
×
Home

The quantum walk search algorithm: factors affecting efficiency

  • NEIL B. LOVETT (a1), MATTHEW EVERITT (a2), ROBERT M. HEATH (a3) and VIV KENDON (a4)
Abstract

We carry out a numerical study of the quantum walk search algorithm of Shenvi, Kempe and Whaley Shenvi et al. (2003) and the factors that affect its efficiency in finding an individual state from an unsorted set. Previous work has focused purely on the effects of the dimensionality of the dataset to be searched. In the current paper we consider the effects of interpolating between dimensions, the connectivity of the dataset and the possibility of disorder in the underlying substrate: all these factors affect the efficiency of the search algorithm. We show that in addition to the strong dependence on the spatial dimension of the structure to be searched, there are also secondary dependencies on the connectivity and symmetry of the lattice, with greater connectivity providing a more efficient algorithm. We also show that the algorithm can tolerate a non-trivial level of disorder in the underlying substrate.

Copyright
References
Hide All
Aaronson, S. and Ambainis, A. (2003) Quantum search of spatial regions. In: Proceedings of the 44th annual IEEE symposium on foundations of computer science (FOCS) 200–209.
Abal, G., Donangelo, R., Marquezino, F. L. and Portugal, R. (2010) Spatial search in a honeycomb network. Mathematical Structures in Computer Science 20 9991009.
Abal, G., Donangelo, R., Marquezino, F. L., Oliveira, A. C. and Portugal, R. (2009) Decoherence in Search Algorithms. In: Proceedings of the 29th Brazilian computer society congress (SEMISH) 293–306.
Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U. (2001) Quantum walks on graphs. In: Proceedings of the 33rd annual ACM symposium on theory of computing (STOC) 50–59.
Ambainis, A. (2003) Quantum walks and their algorithmic applications. International Journal of Quantum Information 1 507518.
Ambainis, A. (2004) Quantum walk algorithm for element distinctness. In: Proceedings of the 45th annual IEEE symposium on foundations of computer science (FOCS) 22–31.
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A. and Watrous, J. (2001) One-dimensional quantum walks. In: Proceedings of the 33rd annual ACM symposium on theory of computing (STOC) 37–49.
Ambainis, A., Backurs, A., Nahimovs, N., Ozols, R. and Rivosh, A. (2013) Theory of quantum computation, communication and cryptography. Lecture Notes in Computer Science 7582 8797.
Ambainis, A., Kempe, J. and Rivosh, A. (2005) Coins make quantum walks faster. In: Proceedings of the 16th annual ACM–SIAM symposium on discrete algorithms (SODA) 1099–1108.
Benioff, P. (2002) Space searches with a quantum robot. In: Quantum Computation and Information. Contemporary Mathematics 305 112.
Bernstein, E., Bennett, C., Brassard, G. and Vazirani, U. (1997) Strengths and weaknesses of quantum computing. SIAM Journal of Computing 26 15101523.
Brassard, G., Høyer, P., Mosca, M. and Tapp, A. (2002) Quantum amplitude amplification and estimation. In: Quantum Computation and Information. Contemporary Mathematics 305 5374.
Buhrman, H. and Spalek, R. (2004) Quantum verification of matrix products. In: Proceedings of the 17th annual ACM–SIAM symposium on discrete algorithms (SODA) 880–889.
Childs, A. M. (2009) Universal computation by quantum walk. Physical Review Letters 102 180501.
Childs, A. M. and Goldstone, J. (2004a) Spatial search by quantum walk. Physical Review A 70 22314.
Childs, A. M. and Goldstone, J. (2004b) Spatial search and the Dirac equation. Physical Review A 70 42312.
Djordjevic, Z. V., Stanley, H. E. and Margolina, A. (1982) Site percolation threshold for honeycomb and square lattices. Journal of Physics A: Mathematical and General 15 L405.
Farhi, E. and Gutmann, S. (1998) Quantum computation and decision trees. Physical Review A 58 915928.
Gebele, T. (1984) Site percolation threshold for square lattice. Journal of Physics A: Mathematical and General 17 L51.
Gottlieb, A. D. (2005) Convergence of continuous-time quantum walks on the line. Physical Review E 72 47102.
Grimmett, G., Janson, S. and Scudo, P. F. (2004) Weak limits for quantum random walks. Physical Review E 69 26119.
Grover, L. K. (1996) A fast quantum mechanical algorithm for database search. Proceedings of the 28th annual ACM symposium on theory of computing (STOC) 212–219.
Hein, B. and Tanner, G. (2009) Quantum search algorithms on the hypercube. Journal of Physics A: Mathematical and Theoretical 42 085303.
Hein, B. and Tanner, G. (2010) Quantum search algorithms on a regular lattice. Physical Review A 82 12326.
Inui, N., Konishi, Y. and Konno, N. (2004) Localization of two-dimensional quantum walks. Physical Review A 69 (5) 052323.
Keating, J. P., Linden, N., Matthews, J. C. F. and Winter, A. (2007) Localization and its consequences for quantum walk algorithms and quantum communication. Physical Review A 76 12315.
Kempe, J. (2003a) Quantum random walks hit exponentially faster. In: Arora, S., Jansen, K., Rolim, J. D. P. and Sahai, A. (eds.) Approximation, Randomization, and Combinatorial Optimization – Proceedings of RANDOM 2003. Springer-Verlag Lecture Notes in Computer Science 2764 354369.
Kempe, J. (2003b) Quantum random walks: an introductory overview. Contemporary Physics 44 307327.
Kendon, V. (2003) Quantum walks on general graphs. International Journal of Quantum Information 4 791805.
Kendon, V. (2007) Decoherence in quantum walks – a review. Mathematical Structures in Computer Science 17 11691220.
Kendon, V. and Tregenna, B. (2003) Decoherence can be useful in quantum walks. Physical Review A 67 42315.
Kendon, V., Leung, G., Bailey, J. and Knott, P. (2011) Fractional scaling of quantum walks on percolation lattices. Journal of Physics: Conference Series 286 012053.
Krovi, H. and Brun, T. A. (2006a) Hitting time for quantum walks on the hypercube. Physical Review A 73 32341.
Krovi, H. and Brun, T. A. (2006b) Quantum walks with infinite hitting times. Physical Review A 74 42334.
Krovi, H. and Brun, T. A. (2007) Quantum walks on quotient graphs. Physical Review A 75 62332.
Krovi, H., Magniez, F., Ozols, M. and Roland, J. (2010) Finding is as easy as detecting for quantum walks. Automata, Languages and Programming 540–551.
Leung, G., Knott, P., Bailey, J. and Kendon, V. (2010) Coined quantum walks on percolation graphs. New Journal of Physics 12 123018.
Lovett, N. B., Cooper, S., Everitt, M., Trevers, M. and Kendon, V. (2010) Universal quantum computation using the discrete-time quantum walk. Physical Review A 81 42330.
Lovett, N., Everitt, M., Trevers, M., Mosby, D., Stockton, D. and Kendon, V. (2011) Spatial search using the discrete time quantum walk. Natural Computing 11 (1) 2335.
Mackay, T. D., Bartlett, S. D., Stephenson, L. T. and Sanders, B. C. (2002) Quantum walks in higher dimensions. Journal of Physics A: Mathematical and General 35 2745.
Magniez, F. and Nayak, A. (2005) Quantum complexity of testing group commutativity. In: Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C. and Yung, M. (eds.) Automata, Languages and Programming – Proceedings 32nd International Colloquium, ICALP 2005. Springer-Verlag Lecture Notes in Computer Science 3580 13121324.
Magniez, F., Nayak, A., Richter, P. C. and Santha, M. (2009) On the hitting times of quantum versus random walks. In: Proceedings of the 20th annual ACM–SIAM symposium on discrete algorithms (SODA) 86–95.
Magniez, F., Nayak, A., Roland, J. and Santha, M. (2007) Search via quantum walk. In: Proceedings of the 39th annual ACM symposium on theory of computing (STOC) 575–584.
Magniez, F., Santha, M. and Szegedy, M. (2005) Quantum algorithms for the triangle problem. In: Proceedings of the 16th annual ACM–SIAM symposium on discrete algorithms (SODA) 1109–1117.
Marquezino, F. L., Portugal, R. and Abal, G. (2010) Mixing Times in Quantum Walks on Two-Dimensional Grids. Physical Review A 82 042341.
Moore, C. and Russell, A. (2002) Quantum walks on the hypercube. In: Rolim, J. D. P. and Vadhan, S. (eds.) Proceedings of 6th international workshop on randomization and approximation techniques in computer science (RANDOM 2002). Springer-Verlag Lecture Notes in Computer Science 2483 164178.
Nayak, A. and Vishwanath, A. (2000) Quantum walk on the line. DIMACS Technical Report 2000-43. Arxiv preprint arXiv:0010117.
Patel, A. and Rahaman, Md. A. (2010) Search on a Hypercubic Lattice through a Quantum Random Walk I: d > 2. Physical Review A 82 032330.
Patel, A., Raghunathan, K. S. and Rahaman, Md. A. (2010) Search on a Hypercubic Lattice through a Quantum Random Walk II: d = 2. Physical Review A 82 032331.
Potoček, V., Gábris, A., Kiss, T. and Jex, I. (2009) Optimized quantum random-walk search algorithms on the hypercube. Physical Review A 79 12325.
Reitzner, D., Hillery, M., Feldman, E. and Bužek, V. (2009) Quantum searches on highly symmetric graphs. Physical Review A 79 12323.
Santha, M. (2008) Quantum walk based search algorithms. In: Agrawal, M., Du, D., Duan, Z. and Li, A. (eds.) Theory and Applications of Models of Computation – Proceedings 5th International Conference, TAMC 2008. Springer-Verlag Lecture Notes in Computer Science 4978 3146.
Santos, R. A. M. and Portugal, R. (2010) Quantum Hitting Time on the Complete Graph. International Journal of Quantum Information 8 (5) 881894.
Shenvi, N., Kempe, J. and Whaley, K. B. (2003) A quantum random-walk search algorithm. Physical Review A 67 52307.
Stauffer, D. and Aharony, A. (1992) Introduction to percolation theory, Taylor and Francis.
Szegedy, M. (2004) Quantum Speed-Up of Markov Chain Based Algorithms. In: Proceedings of 45th annual IEEE symposium on foundations of computer science (FOCS) 32–41.
Tregenna, B., Flanagan, W., Maile, R. and Kendon, V. (2003) Controlling discrete quantum walks: coins and initial states. New Journal of Physics 5 83.
Tulsi, A. (2008) Faster quantum-walk algorithm for the two-dimensional spatial search. Physical Review A 78 12310.
Underwood, M. S. and Feder, D. L. (2010) Universal quantum computation by discontinuous quantum walk. Physical Review A 82 042304.
Zalka, C. (1999) Grover's quantum searching algorithm is optimal. Physical Review A 60 27462751.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 190 *
Loading metrics...

* Views captured on Cambridge Core between 16th May 2018 - 21st September 2018. This data will be updated every 24 hours.