Published online by Cambridge University Press: 10 November 2017
We propose a variant of public announcement logic for asynchronous systems. To capture asynchrony, we introduce two different modal operators for sending and receiving messages. The natural approach to defining the semantics leads to a circular definition, but we describe two restricted cases in which we solve this problem. The first case requires the Kripke model representing the initial epistemic situation to be a finite tree, and the second one only allows announcements from the existential fragment. After establishing some validities, we study the model checking problem and the satisfiability problem in cases where the semantics is well-defined, and we provide several complexity results.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.