Skip to main content Accessibility help
×
×
Home

Some reasons for generalising domain theory

  • MARTIN HYLAND (a1)

Abstract

One natural way to generalise domain theory is to replace partially ordered sets by categories. This kind of generalisation has recently found application in the study of concurrency. An outline is given of the elegant mathematical foundations that have been developed. This is specialised to give a construction of cartesian closed categories of domains, which throws light on standard presentations of domain theory.

Copyright

References

Hide All
Abramsky, S. (1983) Semantic Foundations for Applicative Multiprogramming. In: Diaz, J. (ed.) Automata, Languages and Programming, Procedings of ICALP’83. Springer-Verlag Lecture Notes in Computer Science 154 114.
Adámek, J. and Rosický, J. (1994) Locally Presentable and Accessible Categories. LMS Lecture Notes Series 189.
Awodey, S. (2006) Category Theory, Oxford Logic Guides 49, Clarendon Press.
Barendregt, H., Coppo, M. and Dezani-Ciancaglini, M. (1983) A Filter Lambda Model and the Completeness of Type Assignment. Journal of Symbolic Logic 48 931940.
Barr, M. and Wells, C. (1984) Toposes, Triples and Theories, Grundlehren der mathematischen Wissenschaften 278, Springer-Verlag.
Bauer, A. and Taylor, P. (2009) The Dedekind Reals in Abstract Stone Duality. Mathematical Structures in Computer Science 19 757838.
Beck, J. M. (1967) Triples, Algebras and Cohomology, Ph.D. Dissertation, Columbia University.
Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1993a) A Term Calculus for Intuitionistic Linear Logic. In: Bezem, M. and Groote, J. F. (eds.) Typed Lambda Calculi and Applications. Springer-Verlag Lecture Notes in Computer Science 664 7590.
Benton, N., Bierman, G., de Paiva, V. and Hyland, M. (1993b) Linear lambda-calculus and categorical models revisited. In: Börger, E., Jäger, G., Büning, H. K., Martini, S. and Richter, M. M. (eds.) Proceedings of Computer Science Logic Conference in San Miniato (September 1992). Springer-Verlag Lecture Notes in Computer Science 702 6184.
Berline, C. (2000) From Computation to Foundations via Functions and Application: the Lambda-calculus and its Webbed Models. Theoretical Computer Science 249 81161.
Berry, G. (1979) Modèles completement adéquats et stables des lambda-calculs typés, Thèse de Doctorat d'Etat, Université de Paris VII.
Cattani, G. L. and Winskel, G. (2005) Profunctors, open maps and bisimulation. Mathematical Structures in Computer Science 15 553614.
Coppo, M., Dezani-Ciancaglini, M., Honsell, F. and Longo, G. (1984) Extended Type Structures and Filter Lambda Models. In: Lolli, G., Longo, G. and Marcja, A. (eds.) Logic Colloquium 82, North-Holland241262.
Coquand, T., Gunter, C. A. and Winskel, G. (1989) Domain Theoretic Models of Polymorphism. Information and Computation 81 123167.
Curien, P.-L., Plotkin, G. D. and Winskel, G. (2000) Bistructures, Bidomains and Linear Logic. In: Plotkin, G., Stirling, C. and Tofte, M. (eds.) Proof, Language, and Interaction. Essays in Honour of Robin Milner, MIT Press 2154.
Diers, Y. (1980) Multimonads and Multimonadic Categories. Journal of Pure and Applied Algebra 17 153170.
Edalat, A. (1997) Domains for Computation in Mathematics, Physics and Exact Real Arithmetic. Bulletin of Symbolic Logic 3 401452.
Eilenberg, S. and Kelly, G. M. (1966) Closed Categories. In: Proceedings of the Conference on Categorical Algebra, La Jolla 1965 421–562.
Eilenberg, S. and Wright, J. B. (1967) Automata in general algebras. Information and Control 11 452470.
Engeler, E. (1981) Algebras and Combinators. Algebra Universalis 13 389392.
Fiore, M. P., Plotkin, G. D. and Power, J. (1997) Complete cuboidal sets in axiomatic domain theory. In: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press 268279.
Fiore, M. P. and Plotkin, G. D. (1997) An extension of models of axiomatic domain theory to models of synthetic domain theory. In: van Dalen, D. and Bezem, M. (eds.) Computer Science Logic, Proceedings of 10th International Workshop, CSL'96. Springer-Verlag Lecture Notes in Computer Science 1258 129149.
Fiore, M., Gambino, N., Hyland, M. and Winskel, G. (2008) The cartesian closed bicategory of generalised species of structures. Journal of the London Mathematical Society 77 203220.
Fiore, M., Gambino, N., Hyland, M. and Winskel, G. (in preparation) Kleisli bicategories.
Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science 50 1102.
Artin, A. G. M. and Verdier, J. L. (1972) Théorie des Topos et Cohomologie Étale des Schemas. SGA 4, vol. 1. Springer-Verlag Lecture Notes in Mathematics 269.
Hasegawa, R. (2002) Two applications of analytic functors. Theoretical Computer Science 272 113175.
Houston, R. (2008) Finite products are biproducts in a compact closed category. Journal of Pure and Applied Algebra 212 394400.
Hyland, J. M. E. (1976) A syntactic characterization of the Equality in some Models for the Lambda Calculus. Journal of the London Mathematical Society 12 361370.
Hyland, J. M. E. (1982) The effective topos. In: Troelstra, A. S. and van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, North-Holland165216.
Hyland, J. M. E. (1991) First steps in synthetic domain theory. In: Carboni, I. A., Pedicchio, M.-C. and Rosolini, G. (eds.) Category Theory. Springer-Verlag Lecture Notes in Mathematics 1488 280301.
Hyland, J. M. E. (2002) Proof Theory in the Abstract. Annals of Pure and Applied Logic 114 4378.
Hyland, J. M. E. and Pitts, A. M. (1989) The Theory of Constructions: Categorical Semantics and Topos Theoretic Models. In: Gray, J. W. and Scedrov, A. (eds.) Categories in Computer Science and Logic. Contemporary Mathematics 92 137199.
Hyland, M. and Power, J. (2002) Pseudo-commutative monads and pseudo-closed 2-categories. Journal of Pure and Applied Algebra 175 141185.
Hyland, M. and Schalk, A. (2003) Glueing and Orthogonality for Models of Linear Logic. Theoretical Computer Science 294 183231.
Hyland, M., Nagayama, M., Power, J. and Rosolini, G. (2006) A Category-Theoretic Formulation for Engeler-style Models of the Untyped lambda-Calculus. Proc MFCSIT 2004. Electronic Notes in Theoretical Computer Science 161 4357.
Im, G. B. and Kelly, G. M. (1986) A universal property of the convolution monoidal structure. Journal of Pure and Applied Algebra 43 7588.
Johnstone, P. T. (1982) Stone Spaces. Cambridge Studies in Advanced Mathematics 3, Cambridge University Press.
Joyal, A. (1981) Une théorie combinatoire des séries formelles. Advances in Mathematics 42 182.
Kelly, G. M. (1980) Basic Concepts of Enriched Category Theory. LMS Lecture Note Series 64, Cambridge University Press.
Kelly, G. M. and Laplaza, M. (1990) Coherence for compact closed categories. Journal of Pure and Applied Algebra 19 193213.
Kock, A. (1970) Monads on Symmetric Monoidal Closed Categories. Archiv der Mathematik 21 110.
Kock, A. (1971a) Closed categories generated by Commutative Monads. Journal of the Australian Mathematical Society 12 405424.
Kock, A. (1971b) Bilinearity and Cartesian Closed Monads. Mathematica Scandinavica 29 161174.
Kock, A. (1972) Strong Functors and Monoidal Monads. Archiv der Mathematik 23 113120.
Kreisel, G. (1971) Some reasons for generalizing recusion theory. In: Gandy, R. O. and Yates, C. E. M. (eds.) Logic Colloquium '69, Proceedings of the summer school and colloquium in Mathematical Logic, North-Holland139198.
Lambek, J. and Scott, P. J. (1986) Introduction to higher order categorical logic, Cambridge Studies in Advanced Mathematics 7, Cambridge University Press.
Lehmann, D. J. (1976) Categories for fixed point semantics. In: Proceedings of the 17th IEEE Annual Symposium on Foundations of Computer Science 122–26.
Longley, J. R. (2007) On the ubiquity of certain total type structures. Mathematical Structures in Computer Science 17 841953.
LopezFranco, I. Franco, I. (2008) Autonomous pseudo-monoids, Ph.D. dissertation, University of Cambridge.
MacLane, S. Lane, S. (1971) Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-Verlag.
Platek, R. A. (1966) Foundations of Recursion Theory, Ph.D. dissertation, Stanford University.
Plotkin, G. D. (1976) A Power Domain Construction. SIAM Journal on Computing 5 452487.
Plotkin, G. D. and Winskel, G. (1994) Bistructures, Bidomains and Linear Logic. In: Proceedings of ICALP 352–363.
Reus, B. and Streicher, T. (1999) General synthetic domain theory – a logical approach. Mathematical Structures in Computer Science 9 177223.
Scott, D. S. (1976) Continuous lattices. In: Lawvere, F. W. (ed.) Toposes, Algebraic Geometry and Logic. Springer-Verlag Lecture Notes in Mathematics 274 97136.
Taylor, P. (1986) Recursive Domains, Indexed Category Theory and Polymorphism, Ph.D. dissertation, University of Cambridge.
Taylor, P. (1990) An Algebraic Approach to Stable Domains. Journal of Pure and Applied Algebra 64 171203.
Taylor, P. (1991) The fixed point property in synthetic domain theory. In: Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press 152160.
Taylor, P. (2000) Geometric and Higher Order Logic in terms of ASD. Theory and Applications of Categories 7 284338.
Taylor, P. (2002a) Sober Spaces and Continuations. Theory and Applications of Categories 10 248299.
Taylor, P. (2002b) Subspaces in ASD. Theory and Applications of Categories 10 300366.
van Oosten, J. (2008) Realizability: An Introduction to its Categorical Side, Studies in Logic and The Foundations of Mathematics 152, Elsevier.
Winskel, G. (1980) Events in Computation, Ph.D. dissertation, University of Edinburgh.
Winskel, G. (1993) The formal semantics of programming languages, an introduction, MIT Press.
Winskel, G. (1994) Stable Bistructure Models of PCF. In: Proceedings of the 19th International Symposium on Mathematical Foundations of Computer Science. Springer-Verlag Lecture Notes in Computer Science 841 177197.
Winskel, G. and Zappa Nardelli, F. (2004) NEW-HOPLA a higher-order process language with name generation. In: Proceedings of TCS 2004, Third IFIP International Conference on Theoretical Computer Science 521–534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed