Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Rinaldi, Davide and Schuster, Peter 2016. A universal Krull–Lindenbaum theorem. Journal of Pure and Applied Algebra, Vol. 220, Issue. 9, p. 3207.


    Palmgren, Erik 2014. Formal continuity implies uniform continuity near compact images on metric spaces. Mathematical Logic Quarterly, Vol. 60, Issue. 1-2, p. 66.


    Rinaldi, Davide 2013. A constructive notion of codimension. Journal of Algebra, Vol. 383, p. 178.


    Coquand, Thierry Lombardi, Henri and Schuster, Peter 2009. Spectral schemes as ringed lattices. Annals of Mathematics and Artificial Intelligence, Vol. 56, Issue. 3-4, p. 339.


    Ciraulo, Francesco and Sambin, Giovanni 2008. Finitary formal topologies and Stone’s representation theorem. Theoretical Computer Science, Vol. 405, Issue. 1-2, p. 11.


    Schuster, Peter 2008. The Zariski spectrum as a formal geometry. Theoretical Computer Science, Vol. 405, Issue. 1-2, p. 101.


    ×
  • Mathematical Structures in Computer Science, Volume 17, Issue 1
  • February 2007, pp. 65-80

Spatiality for formal topologies

  • NICOLA GAMBINO (a1) and PETER SCHUSTER (a2)
  • DOI: http://dx.doi.org/10.1017/S0960129506005810
  • Published online: 01 February 2007
Abstract

We define what it means for a formal topology to be spatial, and investigate properties related to spatiality both in general and in examples.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. Aczel (2006) Aspects of general topology in constructive set theory. Ann. Pure Appl. Logic 137 (1–3) 329.

G. Battillotti and G. Sambin (2006) Pretopologies and a uniform presentation of sup-lattices, quantales and frames. Ann. Pure Appl. Logic 137 3061.

T. Coquand , G. Sambin , J. Smith and S. Valentini (2003) Inductively generated formal topologies. Ann. Pure Appl. Logic 124 (1-3) 71106.

G. Curi (2006) On the collection of points of a formal space. Ann. Pure Appl. Logic 137 (1–3) 126146.

M. Fourman and R. Grayson (1982) Formal spaces. In: A. S. Troelstra and D. van Dalen (eds.) The L.E.J. Brouwer Centenary Symposium, North-Holland107122.

M. P. Fourman and J. M. E. Hyland (1979) Sheaf models for analysis. In: M. P. Fourman , C. J. Mulvey and D. S. Scott (eds.) Applications of Sheaves. Springer-Verlag Lecture Notes in Mathematics753280301.

M. P. Fourman and D. S. Scott (1979) Sheaves and logic. In: M. P. Fourman , C. J. Mulvey and D. S. Scott (eds.) Applications of Sheaves. Springer-Verlag Lecture Notes in Mathematics753302401.

N. Gambino (2006) Heyting-valued interpretations for constructive set theory. Ann. Pure Appl. Logic 137 (1–3) 164188.

N. Gambino and P. Aczel (2006) The generalised type-theoretic interpretation of Constructive Set Theory. J. Symb. Logic 71 (1) 63103.

M. Hochster (1969) Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142 4360.

P. T. Johnstone (1977) Rings, fields, and spectra. J. Algebra 49 283–260.

P. T. Johnstone (1982) Stone Spaces, Cambridge University Press.

P. T. Johnstone (1983) The point of pointless topology. Bull. Amer. Math. Soc. 8 (8) 4153.

M. E. Maietti and G. Sambin (2005) Towards a minimalistic foundation for constructive mathematics. In: L. Crosilla and P. Schuster (eds.) From Sets and Types to Topology and Analysis, Oxford University Press91114.

M. E. Maietti and S. Valentini (2004) A structural investigation on formal topology: coreflection of formal covers and exponentiability. J. Symb. Logic 69 (4) 9671005.

I. Moerdijk (1984) Heine-Borel does not imply the fan theorem. J. Symb. Logic 49 (2) 514519.

J. Myhill (1975) Constructive Set Theory. J. Symb. Logic 40 (3) 347382.

S. Negri (2002) Continuous domains as formal spaces. Mathematical Structures in Computer Science 12 1952.

Y. Rav (1977) Variants of Rado's selection lemma and their applications. Math. Nachr. 79 145165.

G. Sambin (1987) Intuitionistic formal spaces – a first communication. In: D. Skordev (ed.) Mathematical Logic and its applications, Plenum187204.

G. Sambin (2003) Some points in formal topology. Theoretical Computer Science 305 347408.

G. Sambin and S. Gebellato (1999) A preview of the basic picture: a new perspective on formal topology. In: T. Altenkirch , W. Naraschewski and B. Reus (eds.) Types for proofs and programs (Irsee 1997). Springer-Verlag Lecture Notes in Computer Science1657194207.

P. Schuster (2006) Formal Zariski topology: positivity and points. Ann. Pure Appl. Logic 137 (1–3) 317359.

I. Sigstam (1995) Formal spaces and their effective presentations. Arch. Math. Logic 34 (4) 211246.

H. Simmons (1978) A framework for topology. In: A. MacIntyre , L. Pacholski and J. Paris (eds.) Logic Colloquium '77, North-Holland239251.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×