Barendregt, H. (1984) The Lambda Calculus: Its Syntax and Semantics, Studies in Logic and The Foundations of Mathematics volume 103, North-Holland.

Barbanera, F. and Berardi, S. (1996) A symmetric lambda calculus for classical program extraction.
Information and Computation
125
(2)
103–117.

Church, A. (1941) The Calculi of Lambda-Conversion, Annals of Mathematical Studies volume 6, Princeton.

Curien, P.-L. and Herbelin, H. (2000) The duality of computation. In: *International Conference on Functional Programming* 233–243.

Curry, H. B. and Feys, R. (1958) Combinatory Logic, volume 1, North-Holland.

Friedman, H. (1973) Some applications of Kleene's methods for intuitionistic systems. In: Cambridge Summer School in Mathematical Logic. Springer-Verlag Lecture Notes in Mathematics
337
113–170.

Friedman, H. (1978) Classically and intuitionistically provably recursive functions.
Higher Set Theory
669
21–28.

Girard, J.-Y. (2006) Le point aveugle – Cours de logique – Volume I – vers la perfection, Hermann.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types, Cambridge University Press.

Goldblatt, R. (1985) On the role of the Baire category theorem and dependent choice in the foundations of logic.
Journal of Symbolic Logic
50
412–422.

Griffin, T. (1990) A formulae-as-types notion of control. In: *Principles of Programming Languages* 47–58.

Guillermo, M. (2008) *Jeux de réalisabilité en arithmétique classique*, Ph.D. thesis, Université Paris 7.

Howard, W. A. (1969) The formulae-as-types notion of construction. Privately circulated notes.

Kleene, S. C. (1945) On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic
10
109–124.

Krivine, J. -L. (1993) Lambda-Calculus, Types and Models, Masson.

Krivine, J.-L. (2001) Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Archive for Mathematical Logic
40
(3)
189–205.

Krivine, J.-L. (2003) Dependent choice, ‘quote’ and the clock.
Theoretical Computer Science
308
259–276.

Krivine, J.-L. (2009) Realizability in classical logic. In: interactive models of computation and program behaviour.
Panoramas et synthèses, 27
197–229.

Martin-Löf, P. (1998) An intuitionistic theory of types. In twenty-five years of constructive type theory.
Oxford Logic Guides
36
127–172.

McCarty, D. (1984) *Realizability and Recursive Mathematics*, Ph.D. thesis, Carnegie-Mellon University.

Miquel, A. (2007) Classical program extraction in the calculus of constructions. In: Computer Science Logic, 21st International Workshop, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Springer Lecture Notes in Computer Science
4646
313–327.

Miquel, A. (2010) Existential witness extraction in classical realizability and via a negative translation. Logical Methods for Computer Science
7
(2)
1–47.

Myhill, J. (1973) Some properties of intuitionistic Zermelo–Fraenkel set theory.
Lecture Notes in Mathematics
337
206–231.

Oliva, P. and Streicher, T. (2008) On Krivine's realizability interpretation of classical second-order arithmetic.
Fundamenta Informaticae
84
(2)
207–220.

Parigot, M. (1997) Proofs of strong normalisation for second order classical natural deduction.
The Journal of Symbolic Logic
62
(4)
1461–1479.

Sperber, M., Kent Dybvig, R., Flatt, M., Van Straaten, A., Findler, R. and Matthews, J. (2009) Revised ^{6} report on the algorithmic language Scheme. Journal of Functional Programming
19
Supplement S1
1–301.