Published online by Cambridge University Press: 17 January 2022
We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries, diagonals, but no connections or reversal) with univalent universes, each containing Π, Σ, path, identity, natural number, boolean, suspension, and glue (equivalence extension) types. The type theory includes a syntactic description of a uniform Kan operation, along with judgmental equality rules defining the Kan operation on each type. The Kan operation uses both a different set of generating trivial cofibrations and a different set of generating cofibrations than the Cohen, Coquand, Huber, and Mörtberg (CCHM) model. Next, we describe a constructive model of this type theory in Cartesian cubical sets. We give a mechanized proof, using Agda as the internal language of cubical sets in the style introduced by Orton and Pitts, that glue, Π, Σ, path, identity, boolean, natural number, suspension types, and the universe itself are Kan in this model, and that the universe is univalent. An advantage of this formal approach is that our construction can also be interpreted in a range of other models, including cubical sets on the connections cube category and the De Morgan cube category, as used in the CCHM model, and bicubical sets, as used in directed type theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.