Skip to main content
×
×
Home

A system of interaction and structure V: the exponentials and splitting

  • ALESSIO GUGLIELMI (a1) and LUTZ STRAßBURGER (a2)
Abstract

System NEL is the mixed commutative/non-commutative linear logic BV augmented with linear logic's exponentials, or, equivalently, it is MELL augmented with the non-commutative self-dual connective seq. NEL is presented in deep inference, because no Gentzen formalism can express it in such a way that the cut rule is admissible. Other recent work shows that system NEL is Turing-complete, and is able to express process algebra sequential composition directly and model causal quantum evolution faithfully. In this paper, we show cut elimination for NEL, based on a technique that we call splitting. The splitting theorem shows how and to what extent we can recover a sequent-like structure in NEL proofs. When combined with a ‘decomposition’ theorem, proved in the previous paper of this series, splitting yields a cut-elimination procedure for NEL.

Copyright
References
Hide All
Abramsky S. and Jagadeesan R. (1994) Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59 (2)543574.
Andreoli J.-M. (1992) Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2 (3)297347.
Blute R., Panangaden P. and Straßburger L. (2008) The logic BV and quantum causality. In: Trends in Logic VI: Logic and the foundations of physics: space, time and quanta.
Blute R., Panangaden P. and Slavnov S. (2009) Deep inference and probablistic coherence spaces.
Blute R. F., Guglielmi A., Ivanov I. T., Panangaden P. and Straßburger L. (2010) A logical basis for quantum evolution and entanglement.
Bruscoli P. (2002) A purely logical account of sequentiality in proof search. In: Stuckey P. J. (ed.) Logic Programming, 18th International Conference. Springer-Verlag Lecture Notes in Artificial Intelligence 2401302316.
Brünnler K. (2003) Atomic cut elimination for classical logic. In: Baaz M. and Makowsky J. A. (eds.) CSL 2003. Mathematical Structures in Computer Science 28038697.
Brünnler K. and Tiu A. (2001) A local system for classical logic. In: Nieuwenhuis R. and Voronkov A. (eds.) LPAR 2001. Springer-Verlag Lecture Notes in Artificial Intelligence 2250347361.
Fleury A. and Retoré C. (1994) The mix rule. Mathematical Structures in Computer Science 4 (2)273285.
Girard J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1102.
Girard J.-Y. (2001) Locus solum: From the rules of logic to the logic of rules. Mathematical Structures in Computer Science 11 (3)301506.
Guglielmi A. (2007) A system of interaction and structure. ACM Transactions on Computational Logic 8 (1).
Guglielmi A. and Gundersen T. (2008) Normalisation control in deep inference via atomic flows. Logical Methods in Computer Science 4 (1:9)136.
Guglielmi A. and Straßburger L. (2002) A non-commutative extension of MELL. In: Baaz M. and Voronkov A. (eds.) Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2002. Springer-Verlag Lecture Notes in Artificial Intelligence 2514231246.
Guglielmi A., Gundersen T. and Parigot M. (2010a) A proof calculus which reduces syntactic bureaucracy. In: Lynch C. (ed.) 21st International Conference on Rewriting Techniques and Applications. Leibniz International Proceedings in Informatics (LIPIcs) 6, Schloss Dagstuhl–Leibniz-Zentrum für Informatik 135150.
Guglielmi A., Gundersen T. and Straßburger L. (2010b) Breaking paths in atomic flows for classical logic. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010), IEEE Computer Society 284293.
Guglielmi A. and Straßburger L. (2001) Non-commutativity and MELL in the calculus of structures. In: Fribourg L. (ed.) Computer Science Logic, CSL 2001. Springer-Verlag Lecture Notes in Computer Science 21425468.
Kahramanoğulları O. (2004) System BV without the equalities for unit. In: Aykanat C., Dayar T. and Körpeoğlu I. (eds.) 19th International Symposium on Computer and Information Sciences, ISCIS 2004. Springer-Verlag Lecture Notes in Computer Science 3280986995.
Kahramanoğulları O. (2006) Reducing nondeterminism in the calculus of structures. In: Hermann M. and Voronkov A. (eds.) LPAR 2006. Springer-Verlag Lecture Notes in Artificial Intelligence 4246272286.
Kahramanoğulları O. (2008a) System BV is NP-complete. In: de Queiroz, R. and Macintyre A. (eds.) 12th Workshop on Logic, Language, Information and Computation. Annals of Pure and Applied Logic 152 (1-3) 107121.
Kahramanoğulları O. (2008b) Interaction and depth against nondeterminism in proof search.
Miller D. (1996) Forum: A multiple-conclusion specification logic. Theoretical Computer Science 165 201232.
Okada M. (1999) Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic. Theoretical Computer Science 227 (1-2)333396.
Retoré C. (1993) Réseaux et Séquents Ordonnés, Ph.D. thesis, Université Paris VII.
Retoré C. (1997) Pomset logic: A non-commutative extension of classical linear logic. In: de Groote, Ph. and Hindley J. R. (eds.) Typed Lambda Calculus and Applications, TLCA'97. Springer-Verlag Lecture Notes in Computer Science 1210300318.
Straßburger L. (2003a) Linear Logic and Noncommutativity in the Calculus of Structures, Ph.D. thesis, Technische Universität Dresden.
Straßburger L. (2003b) MELL in the Calculus of Structures. Theoretical Computer Science 309 (1-3)213285.
Straßburger L. (2003c) System NEL is undecidable. In: De Queiroz R.Pimentel E. and Figueiredo L. (eds.) 10th Workshop on Logic, Language, Information and Computation (WoLLIC). Electronic Notes in Theoretical Computer Science 84.
Straßburger L. and Guglielmi A. (2009) A system of interaction and structure IV: The exponentials and decomposition.
Tiu A. (2006) A system of interaction and structure II: The need for deep inference. Logical Methods in Computer Science 2 (2)124.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 91 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.