Skip to main content

Towards a descriptive theory of cb0-spaces


The paper tries to extend some results of the classical Descriptive Set Theory to as many countably based T 0-spaces (cb0-spaces) as possible. Along with extending some central facts about Borel, Luzin and Hausdorff hierarchies of sets we also consider the more general case of k-partitions. In particular, we investigate the difference hierarchy of k-partitions and the fine hierarchy closely related to the Wadge hierarchy.

Hide All
Andretta, A. (2006). More on Wadge determinacy. Annals of Pure and Applied Logic 144 (1–3) 232.
Andretta, A. and Martin, D.A. (2003). Borel-Wadge degrees. Fundamenta Mathematicae 177 (2) 175192.
de Brecht, M. (2013). Quasi-Polish spaces. Annals of Pure and Applied Logic 164 (3) 356381.
de Brecht, M. and Yamamoto, A. (2009). Σ0 α-admissible representations (Extended Abstract). In: Bauer, A., Hertling, P. and Ko, K.-I. (eds.) Proceedings of 6th International Conference on Computability and Complexity in Analysis. OASICS 11, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
Duparc, J. (2001). Wadge hierarchy and Veblen hierarchy. Part I: Borel sets of finite rank. Journal of Symbolic Logic 66 (1) 5686.
Engelking, R. (1989). General Topology, Heldermann.
Friedman, S.D., Hyttinen, T. and Kulikov, V. (2014). Generalized descriptive set theory and classification theory. Memoirs of the American Mathematical Society 230 (1081) 180.
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W. and Scott, D.W. (2003). Continuous Lattices and Domains, Cambridge University Press.
Hertling, P. (1993). Topologische Komplexitätsgrade von Funktionen mit endlichem Bild. Informatik-Berichte 152, 34 pages, Fernuniversität Hagen, December.
Hertling, P. (1996). Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Ph.D. Thesis, Fachbereich Informatik, FernUniversität Hagen, 1996.
Jayne, J.E. and Rogers, C.A. (1982). First level Borel functions and isomorphisms. Journal de Mathematiques Pures et Appliquees 61 (2) 177205.
Kechris, A.S. (1983). Suslin cardinals, k-Suslin sets and the scale property in the hyperprojective hierarchy. In: Kechris, A.S., Löwe, B. and Steel, J.R. (eds.) The Cabal Seminar, v. 1: Games, Scales and Suslin Cardinals, Lecture Notes in Logic, volume 31, 2008, 314332. (Reprinted from Lecture Notes in Mathematics, No 1019, Springer).
Kechris, A.S. (1995). Classical Descriptive Set Theory, Springer.
Kreitz, C. and Weihrauch, K. (1985). Theory of representations. Theoretical Computer Science 38 3553.
Kruskal, J.B. (1972). The theory of well-quasi-ordering: A frequently discovered concept. Journal of Combinatorics Th.(A) 13 (3) 297305.
Louveau, A. (1983). Some results in the Wadge hierarchy of Borel sets. Lecutre Notes in Mathematics 1019 2855.
Motto Ros, L. (2009). Borel-amenable reducibilities for sets of reals. Journal of Symbolic Logic 74 (1) 2749.
Motto Ros, L., Schlicht, P. and Selivanov, V. (2015). Wadge-like reducibilities on arbitrary quasi-Polish spaces. Mathematical Structures in Computer Science 25 (8) 17051754.
Motto Ros, L. and Semmes, B. (2010). A new proof of a theorem of Jayne and Rogers. Real Analysis Exchange 35 (1) 195203.
Pauly, A. (2012). A new introduction to the theory of represented spaces, arXiv:1204.3763.
Pauly, A. and de Brecht, M. (2013). Towards synthetic descriptives set theory: An instantiation with represented spaces, arXiv:1307.1850.
Saint Raymond, J. (2007). Preservation of the Borel class under countable-compact-covering mappings. Topology and its Applications 154 (8) 17141725.
Schröder, M. (2002). Extended admissibility. Theoretical Computer Science 284 (2) 519538.
Schröder, M. (2003). Admissible Representations for Continuous Computations, Ph.D. Thesis, Fachbereich Informatik, FernUniversität Hagen, 2003.
Schröder, M. and Selivanov, V. (2015). Some hierarchies of qcb0-spaces. Mathematical Structures in Computer Science 25 (8) 17991823.
Schröder, M. and Selivanov, V. (2015). Hyperprojective hierarchy of qcb0-spaces. Computability 4 (1) 117.
Selivanov, V.L. (1983). Hierarchies of hyperarithmetical sets and functions. Algebra and Logic 22 (6) 473491.
Selivanov, V.L. (2004). Difference hierarchy in ϕ-spaces. Algebra and Logic 43 (4) 238248.
Selivanov, V.L. (2005a). Variations on the Wadge reducibility. Siberian Advances in Mathematics 15 (3) 4480.
Selivanov, V.L. (2005b). Hierarchies in ϕ-spaces and applications. Mathematical Logic Quarterly 51 (1) 4561.
Selivanov, V.L. (2006). Towards a descriptive set theory for domain-like structures. Theoretical Computer Science 365 (2) 258282.
Selivanov, V.L. (2007a). The quotient algebra of labeled forests modulo h-equivalence. Algebra and Logic 46 (2) 120133.
Selivanov, V.L. (2007b). Hierarchies of Δ0 2-measurable k-partitions. Mathematical Logic Quarterly 53 (4–5) 446461.
Selivanov, V.L. (2008a). On the difference hierarchy in countably based T 0-spaces. Electronic Notes in Theoretical Computer Science 221 257269.
Selivanov, V.L. (2008b). Fine hierarchies and m-reducibilities in theoretical computer science. Theoretical Computer Science 405 (1–2) 116163.
Selivanov, V.L. (2010). On the Wadge reducibility of k-partitions. Journal of Logic and Algebraic Programming 79 (1) 92102.
Selivanov, V.L. (2011). A fine hierarchy of ω-regular k-partitions. In: Löwe, B. et al. (eds.) CiE 2011. Lecture Notes in Computer Science 6735 Springer, 260269.
Selivanov, V.L. (2012). Fine hierarchies via Piestley duality. Annals of Pure and Applied Logic 163 (8) 10751107.
Selivanov, V.L. (2013). Total representations. Logical Methods in Computer Science 9 (2) 130.
Steel, J. (1980). Determinateness and the separation property. Journal of Symbolic Logic 45 (1) 143146.
Van Wesep, R. (1976). Wadge degrees and descriptive set theory. Lecture Notes in Mathematics 689 151170.
Wadge, W. (1972). Degrees of complexity of subsets of the Baire space. Notices of the American Mathematical Society 19 714715.
Wadge, W. (1984). Reducibility and Determinateness in the Baire Space, Ph.D. Thesis, University of California.
Weihrauch, K. (2000). Computable Analysis, Springer.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Structures in Computer Science
  • ISSN: 0960-1295
  • EISSN: 1469-8072
  • URL: /core/journals/mathematical-structures-in-computer-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 130 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd March 2018. This data will be updated every 24 hours.