Skip to main content Accessibility help
×
Home

Traces for coalgebraic components

  • ICHIRO HASUO (a1) and BART JACOBS (a2)

Abstract

This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, state-based modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy's tube diagrams, which are an extension of standard string diagrams for monoidal categories, to represent and manipulate component diagrams. The microcosm principle then yields a canonical ‘inner’ traced monoidal structure on the category of resumptions (elements of final coalgebras/components). This generalises an observation by Abramsky, Haghverdi and Scott.

Copyright

References

Hide All
Abramsky, S. (2009) Coalgebras, Chu spaces, and representations of physical systems. Available at http://arxiv.org/0910.3959.
Abramsky, S., Haghverdi, E. and Scott, P. (2002) Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12 (5)625665.
Abramsky, S. and Jagadeesan, R. (1994) Games and full completeness for multiplicative linear logic. Journ. Symb. Logic 59 (2)543574.
Arbab, F. (2004) Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14 (3)329366.
Asada, K. and Hasuo, I. (2010) Categorifying computations into components via arrows as profunctors. In: Jacobs, B., Niqui, M., Rutten, J. and Silva, A. (eds.) Coalgebraic Methods in Computer Science (CMCS 2010). Electronic Notes in Theoretical Computer Science 264 2545.
Baez, J. C. and Dolan, J. (1998) Higher dimensional algebra III: n-categories and the algebra of opetopes. Adv. Math 135 145206.
Baier, C., Sirjani, M., Arbab, F. and Rutten, J. J. M. M. (2006) Modeling component connectors in Reo by constraint automata. Science of Comput. Progr. 61 (2)75113.
Barbosa, L. S. (2001) Components as Coalgebras, Ph.D. thesis, Univ. Minho.
Barbosa, L. S. (2003) Towards a calculus of state-based software components. Journ. of Universal Comp. Sci. 9 (8)891909.
Barr, M. (1993) Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114 (2)299315. (Corrigendum in Theoretical Computer Science 124 189–192.)
Borceux, F. (1994) Handbook of Categorical Algebra, Encyclopedia of Mathematics 50–52, Cambridge University Press.
Cockett, J. R. B. and Seely, R. A. G. (1999) Linearly distributive functors. Journal of Pure and Applied Algebra 143 (1-3) 155203.
Goldblatt, R. (1992) Logics of Time and Computation, second revised edition, CSLI Lecture Notes 7, Stanford.
Haghverdi, E. (2000) A Categorical Approach to Linear Logic, Geometry of Proofs and Full Completeness, Ph.D. thesis, University of Ottawa.
Hasegawa, M. (1999) Models of Sharing Graphs: A Categorical Semantics of Let and Letrec, Distinguished Dissertations in Computer Science, Cambridge University Press.
Hasegawa, M. (2004) The uniformity principle on traced monoidal categories. Publ. RIMS, Kyoto Univ. 40 (3)9911014.
Hasuo, I., Heunen, C., Jacobs, B. and Sokolova, A. (2009) Coalgebraic components in a many-sorted microcosm. In: Kurz, A. and Tarlecki, A. (eds.) Conference on Algebra and Coalgebra in Computer Science (CALCO 2009). Springer-Verlag Lecture Notes in Computer Science 5728 6480.
Hasuo, I., Jacobs, B. and Sokolova, A. (2007) Generic trace semantics via coinduction. Logical Methods in Comp. Sci. 3 (4:11).
Hasuo, I., Jacobs, B. and Sokolova, A. (2008) The microcosm principle and concurrency in coalgebra. In: Foundations of Software Science and Computation Structures. Springer-Verlag Lecture Notes in Computer Science 4962 246260.
Hughes, J. (2000) Generalising monads to arrows. Science of Comput. Progr. 37 (1–3)67111.
Jacobs, B. (1999) Categorical Logic and Type Theory, North Holland.
Jacobs, B. (2010) From coalgebraic to monoidal traces. In Jacobs, B., Niqui, M., Rutten, J. and Silva, A. (eds.) Coalgebraic Methods in Computer Science (CMCS 2010). Electronic Notes in Theoretical Computer Science 264 125140.
Jacobs, B., Heunen, C. and Hasuo, I. (2009) Categorical semantics for arrows. Journ. Funct. Progr. 19 (3-4)403438.
Jacobs, B. and Rutten, J. J. M. M. (1997) A tutorial on (co)algebras and (co)induction. EATCS Bulletin 62 222259.
Janelidze, G. and Kelly, M. (2001) A note on actions of a monoidal category. Theory and Applications of Categories 9 (4)6191. (Also available at www.tac.mta.ca/tac/volumes/9/n4/9-04abs.html.)
Joyal, A. and Street, R. (1991) The geometry of tensor calculus, I. Adv. Math 88 55112.
Joyal, A., Street, R. and Verity, D. (1996) Traced monoidal categories. Math. Proc. Cambridge Phil. Soc. 119 (3)425446.
Katis, P., Sabadini, N. and Walters, R. F. C. (1997) Bicategories of processes. Journ. of Pure and Appl. Algebra 115 (2)141178.
Kelly, G. M. and Street, R. (1974) Review of the elements of 2-categories. In Kelly, G. M. (ed.) Proc. Sydney Category Theory Seminar 1972/1973. Springer-Verlag Lecture Notes in Computer Science 420 75103.
Klin, B. (2009) Bialgebraic methods and modal logic in structural operational semantics. Information and Computation 207 (2)237257.
Krstić, S., Launchbury, J. and Pavlović, D. (2001) Categories of processes enriched in final coalgebras. In: Honsell, F. and Miculan, M. (eds.) Foundations of Software Science and Computation Structures. Springer-Verlag Lecture Notes in Computer Science 2030 303317.
Kurz, A. and Pattinson, D. (2005) Coalgebraic modal logic of finite rank. Mathematical Structures in Computer Science 15 (3)453473.
MacLane, S. Lane, S. (1998) Categories for the Working Mathematician, second edition, Springer-Verlag.
McCurdy, M. B. (2010) The Tannaka-representation adjunction for weak bialgebras and separable Frobenius monoidal functors. (Forthcoming Ph.D. thesis, Macquarie University.)
Melliès, P.-A. (2006) Functorial boxes in string diagrams. In: Ésik, Z. (ed.) CSL. Springer-Verlag Lecture Notes in Computer Science 4207 130.
Milner, R. (1975) Processes: a mathematical model of computing agents. In: Logic Colloq. '73, North-Holland157173.
Milner, R. (1980) A Calculus of Communicating Systems. Springer-Verlag Lecture Notes in Computer Science 92.
Moggi, E. (1991) Notions of computation and monads. Information and Computation 93 (1)5592.
Pattinson, D. (2003) An introduction to the theory of coalgebras. Course notes for NASSLLI.
Penrose, R. (1971) Applications of negative dimensional tensors. In: Welsh, D. (ed.) Combinatorial Mathematics and its Applications, Academic Press 221244.
Rutten, J. J. M. M. (2000) Universal coalgebra: a theory of systems. Theoretical Computer Science 249 380.
Rutten, J. J. M. M. (2006) Algebraic specification and coalgebraic synthesis of Mealy automata. Electronic Notes in Theoretical Computer Science 160 305319.
Selinger, P. (2011) A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. Springer-Verlag Lecture Notes in Physics 813 289355.
Simpson, A. K. and Plotkin, G. D. (2000) Complete axioms for categorical fixed-point operators. In: LICS '00 Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society 3041.
Sokolova, A. (2005) Coalgebraic Analysis of Probabilistic Systems, Ph.D. thesis, Techn. Univ. Eindhoven.
Szyperski, C. (1998) Component Software, Addison-Wesley.
Turi, D. and Plotkin, G. (1997) Towards a mathematical operational semantics. In: LICS '97 Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science IEEE Computer Society 280291.

Related content

Powered by UNSILO

Traces for coalgebraic components

  • ICHIRO HASUO (a1) and BART JACOBS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.