Hostname: page-component-5b777bbd6c-sbgtn Total loading time: 0 Render date: 2025-06-19T15:59:56.037Z Has data issue: false hasContentIssue false

Transformation of any Verbrugge model to a bisimilar Veltman model

Published online by Cambridge University Press:  14 May 2025

Tin Perkov*
Affiliation:
Faculty of Teacher Education, University of Zagreb, Zagreb, Croatia

Abstract

Veltman semantics is the basic Kripke-like semantics for interpretability logic. Verbrugge semantics is a generalization of Veltman semantics. An appropriate notion of bisimulation between a Verbrugge model and a Veltman model is developed in this paper. We show that each Verbrugge model can be transformed to a bisimilar Veltman model.

Type
Special Issue: WoLLIC 2023
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Hennessy, M. and Milner, R. (1985). Algebraic laws for nondeterminism and concurrency. Journal of the ACM 32 (1) 137161.CrossRefGoogle Scholar
Horvat, S., Perkov, T. and Vuković, M. (2023). Bisimulations and bisimulation games between Verbrugge models. Mathematical Logic Quarterly 69 (2) 231243.CrossRefGoogle Scholar
Joosten, J., Mas Rovira, J., Mikec, L. and Vuković, M. (2024) An overview of Verbrugge semantics, a.k.a. generalised Veltman semantics. In: Bezhanishvili, N. (eds.) Dick de Jongh on Intuitionistic and Provability Logics, vol. 28, Cham: Springer, 111153. Outstanding Contributions to Logic.Google Scholar
Kurahashi, T. and Okawa, Y. (2021). Modal completeness of sublogics of the interpretability logic IL. Mathematical Logic Quarterly 67 (2) 164185.CrossRefGoogle Scholar
Mas Rovira, J. (2020). Interpretability logics and generalized Veltman semantics in Agda. Master’s thesis, University of Barcelona.Google Scholar
Mikec, L., Perkov, T. and Vuković, M. (2017). Decidability of interpretability logics ILM $_0$ and ILW*. Logic Journal of the IGPL 25, 758772.CrossRefGoogle Scholar
Mikec, L. and Vuković, M. (2020). Interpretability logics and generalized Veltman semantics. The Journal of Symbolic Logic 85 (2) 749772.CrossRefGoogle Scholar
Perkov, T. (2023). Bisimulations between Verbrugge models and Veltman models. In: Hansen, H. H. (eds.) Logic, Language, Information, and Computation. 29th International Workshop, WoLLIC 2023, vol. 13923, Halifax, NS, Canada, Springer, 305317. Lecture Notes in Computer Science.CrossRefGoogle Scholar
Perkov, T. and Vuković, M. (2016). Filtrations of generalized Veltman models. Mathematical Logic Quarterly 62 (4-5) 412419.CrossRefGoogle Scholar
Verbrugge, R. (1992). Verzamelingen-Veltman frames en modellen (Set-Veltman frames and models). Unpublished manuscript (scan of the original included in Mas Rovira (2020)). Amsterdam.Google Scholar
Visser, A. (1998) An overview of interpretability logic. In: Kracht, M. (eds.) Advances in Modal Logic, vol. 1, Stanford: CSLI Publications, 307359.Google Scholar
Vrgoč, D. and Vuković, M. (2010). Bisimulations and bisimulation quotients of generalized Veltman models. Logic Journal of the IGPL 18 (6) 870880.CrossRefGoogle Scholar
Vuković, M. (1999). The principles of interpretability. Notre Dame Journal of Formal Logic 40 (2) 227235.CrossRefGoogle Scholar
Vuković, M. (2000). Characteristic classes and bisimulations of generalized Veltman models. Grazer Mathematische Berichte 341, 716.Google Scholar
Vuković, M. (2005). Hennessy–Milner theorem for interpretability logic. Bulletin of the Section of Logic 34, 195201.Google Scholar
Vuković, M. (2008). Bisimulations between generalized Veltman models and Veltman models. Mathematical Logic Quarterly 54 (4) 368373.CrossRefGoogle Scholar