Arndt, P. and Kapulkin, K. (2011) Homotopy-theoretic models of type theory. In: Ong, L. (ed.) Typed Lambda Calculi and Applications, Lecture Notes in Computer Science volume 6690, Springer Berlin/Heidelberg
45–60.
Avigad, J., Kapulkin, C. and Lumsdaine, P. L. (2013) Homotopy limits in Coq. ArXiv:1304.0680.
Awodey, S., Garner, R., Martin-Löf, P. and Voevodsky, V. (2011) Mini-workshop: The homotopical interpretation of constructive type theory. Oberwolfach Reports 8.1, 609–638.
Awodey, S. and Warren, M. A. (2009) Homotopy theoretic models of identity types. Mathematical Proceedings of the Cambridge Philosophical Society
146
(45)
45–55. ArXiv:0709.0248.
Barthel, T. and Riehl, E. (2013) On the construction of functorial factorizations for model categories. Algebraic and Geometric Topology
13
1089–1124. ArXiv:1204.5427.
Bellissima, F. (1986) Finitely generated free Heyting algebras. Journal of Symbolic Logic
51
(1)
152–165.
Berger, C. and Moerdijk, I. (2011) On an extension of the notion of Reedy category. Mathematische Zeitschrift
269
(3)
977–1004. ArXiv:0809.3341.
Bergner, J. E. and Rezk, C. (2013) Reedy categories and the Θ-construction. Mathematische Zeitschrift
274
(1–2)
499–514. ArXiv:1110.1066.
Brown, K. S. (1974) Abstract homotopy theory and generalized sheaf cohomology. Transactions of the American Mathematical Society
186
419–458.
Cartmell, J. (1986) Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic
32
209–243.
Cisinski, D.-C. (2002) Théories homotopiques dans les topos. Journal of Pure and Applied Algebra
174
43–82.
Cisinski, D.-C. (2006) Les préfaisceaux comme modèles type d'homotopie. Vol. 308. Astérisque. Soc. Math. France.
Gambino, N. and Garner, R. (2008) The identity type weak factorisation system. Theoretical Computer Science
409
(1)
94–109.
Gepner, D. and Kock, J. (2012) Univalence in locally Cartesian closed 1-categories. ArXiv:1208.1749.
Hedberg, M. (1998) A coherence theorem for Martin–Löf's type theory. Journal of Functional Programming
8
(4)
413–436.
Hirschhorn, P. S. (2003) Model Categories and their Localizations, Mathematical Surveys and Monographs volume 99, American Mathematical Society.
Hofmann, M. (1994) On the interpretation of type theory in locally cartesian closed categories. In: Proceedings of Computer Science Logic. Springer Lecture Notes in Computer Science 427–441.
Hofmann, M. and Streicher, T. (1998) The groupoid interpretation of type theory. In: Twenty-five years of constructive type theory (Venice, 1995). Oxford Logic Guides, volume 36, New York: Oxford University Press
83–111.
Hofstra, P. and Warren, M. A. (2013) Combinatorial realizability models of type theory. Annals of Pure and Applied Logic
164
(10)
957–988. ArXiv:1205.5527.
Hovey, M. (1999) Model Categories, Mathematical Surveys and Monographs volume 63, American Mathematical Society.
Jacobs, B. (1999) Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics volume 141, Amsterdam: North Holland.
Johnson, M. W. (2010) On modified Reedy and modified projective model structures. Theory and Applications of Categories
24
(8)
179–208.
Kapulkin, C., Lumsdaine, P. L. and Voevodsky, V. (2012) The simplicial model of univalent foundations. ArXiv:1211.2851.
Licata, D. R. and Harper, R. (2012) Canonicity for 2-dimensional type theory. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '12, Philadelphia, PA, USA: ACM
337–348.
Lumsdaine, P. L. (2010) Weak omega-categories from intensional type theory. Typed Lambda Calculi and Applications
6
1–19. ArXiv:0812.0409.
Lumsdaine, P. L. and Shulman, M. (2014) Semantics of higher inductive types. In preparation.
Lumsdaine, P. L. and Warren, M. (2014) The local universes model: an overlooked coherence construction for dependent type theories. ArXiv:1411.1736.
Lurie, J. (2009) Higher Topos Theory, Annals of Mathematics Studies volume 170, Princeton University Press. ArXiv:math.CT/0608040.
Quillen, D. G. (1967) Homotopical Algebra, Lecture Notes in Mathematics volume 43, Springer-Verlag.
Radulescu-Banu, A. (2006) Cofibrations in homotopy theory. ArXiv:math/0610009.
Shulman, M. (2014) The univalence axiom for elegant Reedy presheaves. To appear in HHA. ArXiv:1307.6248.
Streicher, T. (1991) Semantics of Type Theory: Correctness, Completeness, and Independence Results, Progress in Theoretical Computer Science, Birkhaäuser.
Strøm, A. (1972) The homotopy category is a homotopy category. Archiv der Mathematik (Basel)
23
435–441.
van den Berg, B. and Garner, R. (2011) Types are weak ω-groupoids. Proceedings of the London Mathematical Society
102
(2)
370–394.
van den Berg, B. and Garner, R. (2012) Topological and simplicial models of identity types. ACM Transactions on Computational Logic
13
(1)
3:1–3:44.
Wadler, P. (1989) Theorems for free! In: Functional Programming Languages and Computer Architecture, ACM Press
347–359.
Warren, M. A. (2008) Homotopy Theoretic Aspects of Constructive Type Theory, Ph.D. thesis, Carnegie Mellon University.