[1]Avelin, H., Deformation of $\Gamma _0(5)$-cusp forms. Math. Comp. 76(257) (2007), 361–384. [2]Balslev, E., Spectral deformation of Laplacians on hyperbolic manifolds. Comm. Anal. Geom. 5(2) (1997), 213–247.

[3]Balslev, E. and Venkov, A., Spectral theory of Laplacians for Hecke groups with primitive character. Acta Math. 186(2) (2001), 155–217.

[4]Balslev, E. and Venkov, A., On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians. Algebra i Analiz 17(1) (2005), 5–52, translation in *St. Petersburg Math. J.* **17**(1) (2006), 1–37.

[5]Bruggeman, R.W., Families of Automorphic Forms (*Monographs in Mathematics ***88**), Birkhäuser Boston, Inc. (Boston, MA, 1994).

[6]Chinta, G. and Goldfeld, D., Grössencharakter $L$-functions of real quadratic fields twisted by modular symbols. Invent. Math. 144(3) (2001), 435–449. [7]Deitmar, A. and Diamantis, N., Automorphic forms of higher order. J. Lond. Math. Soc. (2) 80(1) (2009), 18–34.

[8]Diamantis, N., Knopp, M., Mason, M. and O’Sullivan, C., $L$-functions of second-order cusp forms. Ramanujan J. 12(3) (2006), 327–347. [9]Colin de Verdière, Y., Pseudo-laplaciens II. Ann. Inst. Fourier (Grenoble) 33(2) (1983), 87–113.

[10]Deshouillers, J.-M. and Iwaniec, H., The nonvanishing of Rankin–Selberg zeta-functions at special points. In The Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984) (*Contemporary Mathematics ***53**), American Mathematical Society (Providence, RI, 1986), 51–95.

[11]Deshouillers, J.-M., Iwaniec, H., Phillips, R. S. and Sarnak, P., Maass cusp forms. Proc. Nat. Acad. Sci. USA 82(11) (1985), 3533–3534.

[12]Diamantis, N. and O’Sullivan, C., Hecke theory of series formed with modular symbols and relations among convolution $L$-functions. Math. Ann. 318(1) (2000), 85–105. [13]Elkies, Noam D., Elliptic and modular curves over finite fields and related computational issues.In Computational Perspectives on Number Theory (Chicago, IL, 1995) (*AMS/IP Studies in Advanced Mathematics ***7**), American Mathematical Society (Providence, RI, 1998), 21–76.

[14]Farmer, D. and Lemurell, S., Deformations of Maass forms. Math. Comput. 74 (2005), 1967–1982.

[15]Goldfeld, D., Zeta functions formed with modular symbols. In Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996) (*Proceedings of Symposia in Pure Mathematics ***66**, **Part 1**), American Mathematical Society (Providence, RI, 1999), 111–121.

[16]Goldfeld, D., The distribution of modular symbols. In Number Theory in Progress, Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter (Berlin, 1999), 849–865.

[17]Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th edn, Elsevier/Academic Press (Amsterdam, 2007).

[18]Hejhal, D. A., The Selberg Trace Formula for PSL(2, *R*), Vol. 2 (*Lecture Notes in Mathematics ***1001**), Springer-Verlag (Berlin, 1983).

[19]Iwaniec, H., Spectral Methods of Automorphic Forms, 2nd edn (*Graduate Studies in Mathematics ***53**), American Mathematical Society (Providence, RI, 2002); Revista Matematica Iberoamericana, Madrid, 2002.

[20]Jorgenson, J. and O’Sullivan, C., Unipotent vector bundles and higher-order non-holomorphic Eisenstein series. J. Théor. Nombres Bordeaux 20(1) (2008), 131–163.

[21]Kato, T., Perturbation Theory for Linear Operators, Reprint of the 1980 edition (*Classics in Mathematics*), Springer-Verlag (Berlin, 1995).

[22]Lax, P. D. and Phillips, R. S., Scattering Theory for Automorphic Functions (*Annals of Mathematics Studies ***87**), Princeton University Press (Princeton, NJ, 1976).

[23]Luo, W., Nonvanishing of $L$-values and the Weyl law. Ann. of Math. (2) 154(2) (2001), 477–502. [24]Mazur, B. and Swinnerton-Dyer, P., Arithmetic of Weil curves. Invent. Math. 25 (1974), 1–61.

[25]Müller, W., Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr. 111 (1983), 197–288.

[26]Müller, W., Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109(2) (1992), 265–305.

[27]Müller, W., On the analytic continuation of rank one Eisenstein series. Geom. Funct. Anal. 6(3) (1996), 572–586.

[28]O’Sullivan, C., Properties of Eisenstein series formed with modular symbols. *PhD Thesis*, Columbia University, 1998.

[29]O’Sullivan, C., Properties of Eisenstein series formed with modular symbols. J. Reine Angew. Math. 518 (2000), 163–186.

[30]Petridis, Y. N., On the singular set, the resolvent and Fermi’s golden rule for finite volume hyperbolic surfaces. Manuscripta Math. 82(3–4) (1994), 331–347.

[31]Petridis, Y. N., Spectral deformations and Eisenstein series associated with modular symbols. Internat. Math. Res. Notices (19) (2002), 991–1006.

[32]Petridis, Y. N. and Risager, M. S., Modular symbols have a normal distribution. Geom. Funct. Anal. 14(5) (2004), 1013–1043.

[33]Petridis, Y. N. and Risager, M. S., Dissolving cusp forms in Teichmüller spaces (in preparation).

[34]Phillips, R. S. and Sarnak, P., On cusp forms for co-finite subgroups of ${\rm PSL}(2,R)$. Invent. Math. 80(2) (1985), 339–364. [35]Phillips, R. and Sarnak, P., Perturbation theory for the Laplacian on automorphic functions. J. Amer. Math. Soc. 5(1) (1992), 1–32.

[36]Phillips, R. and Sarnak, P., Cusp forms for character varieties. Geom. Funct. Anal. 4(1) (1994), 93–118.

[37]Risager, M., Automorphic forms and modular symbols. *PhD Thesis*, Aarhus Universitet, 2003.

[38]Sarnak, P., On cusp forms. II. In Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of his Sixtieth Birthday, Part II (Ramat Aviv, 1989) (*Israel Mathematical Conference Proceedings **3*), Weizmann (Jerusalem, 1990), 237–250.

[39]Selberg, A., Göttingen Lecture Notes in Collected Papers, with a foreword by K. Chandrasekharan Vol. I, Springer-Verlag (Berlin, 1989).

[40]Simon, B., Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. of Math. (2) 97 (1973), 247–274. [41]Strömberg, F., Computational aspects of maass waveform. *PhD Thesis*, University of Uppsala, 2005.

[42]Wolpert, S. A., Disappearance of cusp forms in special families. Ann. of Math. (2) 139(2) (1994), 239–291.